1 Introduction

The Euler-Mascheroni constant was first introduced by Leonhard Euler (1707-1783) in 1734 as the limit of the sequence

γ(n):= m = 1 n 1 m lnn.
(1.1)

There are many famous unsolved problems about the nature of this constant (see, e.g., the survey papers or books of Brent and Zimmermann [1], Dence and Dence [2], Havil [3] and Lagarias [4]). For example, it is a long-standing open problem if the Euler-Mascheroni constant is a rational number. A good part of its mystery comes from the fact that the known algorithms converging to γ are not very fast, at least, when they are compared to similar algorithms for π and e.

The sequence ( γ ( n ) ) n N converges very slowly toward γ, like ( 2 n ) 1 . Up to now, many authors have been preoccupied with improving its rate of convergence (see, e.g., [2, 522] and the references therein). We list some main results as follows:

m = 1 n 1 m ln ( n + 1 2 ) = γ + O ( n 2 ) (DeTemple [6]) , m = 1 n 1 m ln n 3 + 3 2 n 2 + 227 240 + 107 480 n 2 + n + 97 240 = γ + O ( n 6 ) (Mortici [13]) , m = 1 n 1 m ln ( 1 + 1 2 n + 1 24 n 2 1 48 n 3 + 23 5 , 760 n 4 ) = γ + O ( n 5 ) (Chen and Mortici [5]).

Recently, Mortici and Chen [14] provided a very interesting sequence,

ν ( n ) = m = 1 n 1 m 1 2 ln ( n 2 + n + 1 3 ) ( 1 180 ( n 2 + n + 1 3 ) 2 + 8 2 , 835 ( n 2 + n + 1 3 ) 3 + + 5 1 , 512 ( n 2 + n + 1 3 ) 4 + 592 93 , 555 ( n 2 + n + 1 3 ) 5 ) ,

and proved

lim n n 12 ( ν ( n ) γ ) = 796 , 801 43 , 783 , 740 .
(1.2)

Hence the rate of convergence of the sequence ( ν ( n ) ) n N is n 12 .

Very recently, by inserting the continued fraction term in (1.1), Lu [9] introduced a class of sequences ( r k ( n ) ) n N (see Theorem 1) and showed

1 72 ( n + 1 ) 3 <γ r 2 (n)< 1 72 n 3 ,
(1.3)
1 120 ( n + 1 ) 4 < r 3 (n)γ< 1 120 ( n 1 ) 4 .
(1.4)

In fact, Lu [9] also found a 4 without proof. In general, the continued fraction method could provide a better approximation than others, and has less numerical computations.

First, we will prove the following theorem.

Theorem 1 For the Euler-Mascheroni constant, we have the following convergent sequence:

r(n)=1+ 1 2 ++ 1 n lnn a 1 n + a 2 n n + a 3 n n + ,

where ( a 1 , a 2 , a 4 , a 6 , a 8 , a 10 , a 12 )=( 1 2 , 1 6 , 3 5 , 79 126 , 7 , 230 6 , 241 , 4 , 146 , 631 3 , 833 , 346 , 306 , 232 , 774 , 533 179 , 081 , 182 , 865 ), and a 2 k + 1 = a 2 k for 1k6.

Let

R k (n):= a 1 n + a 2 n n + a 3 n n + a 4 n n + a k

(see the Appendix for their simple expressions) and

r k (n):= m = 1 n 1 m lnn R k (n).

For 1k13, we have

lim n n k + 1 ( r k ( n ) γ ) = C k ,
(1.5)

where

( C 1 , , C 13 ) = ( 1 12 , 1 72 , 1 120 , 1 200 , 79 25 , 200 , 6 , 241 3 , 175 , 200 , 241 105 , 840 , 58 , 081 22 , 018 , 248 , 262 , 445 91 , 974 , 960 , 2 , 755 , 095 , 121 892 , 586 , 949 , 408 , 20 , 169 , 451 3 , 821 , 257 , 440 , 406 , 806 , 753 , 641 , 401 45 , 071 , 152 , 103 , 463 , 200 , 71 , 521 , 421 , 431 5 , 152 , 068 , 292 , 800 ) .

Open problem For every k1, we have a 2 k + 1 = a 2 k .

The main aim of this paper is to improve (1.3) and (1.4). We establish the following more precise inequalities.

Theorem 2 Let r 10 (n), r 11 (n), C 10 and C 11 be defined in Theorem  1, then

C 10 1 ( n + 1 ) 11 <γ r 10 (n)< C 10 1 n 11 ,
(1.6)
C 11 1 ( n + 1 ) 12 < r 11 (n)γ< C 11 1 n 12 .
(1.7)

Remark 1 In fact, Theorem 2 implies that r 10 (n) is a strictly increasing function of n, whereas r 11 (n) is a strictly decreasing function of n. Certainly, it has similar inequalities for r k (n) (1k9), we leave these for readers to verify. It is also should be noted that (1.4) cannot deduce the monotonicity of r 3 (n).

Remark 2 It is worth to point out that Theorem 2 provides sharp bounds for a harmonic sequence which are superior to Theorems 3 and 4 of Mortici and Chen [14].

2 The proof of Theorem 1

The following lemma gives a method for measuring the rate of convergence. This lemma was first used by Mortici [23, 24] for constructing asymptotic expansions or to accelerate some convergences. For proof and other details, see, e.g., [24].

Lemma 1 If the sequence ( x n ) n N is convergent to zero and there exists the limit

lim n + n s ( x n x n + 1 )=l[,+]
(2.1)

with s>1, then there exists the limit

lim n + n s 1 x n = l s 1 .
(2.2)

In the sequel, we always assume n2.

We need to find the value a 1 R which produces the most accurate approximation of the form

r 1 (n)= m = 1 n 1 m lnn a 1 n ,
(2.3)

here we note R 1 (n)= a 1 /n. To measure the accuracy of this approximation, we usually say that approximation (2.3) is better as r 1 (n)γ faster converges to zero. Clearly,

r 1 (n) r 1 (n+1)=ln ( 1 + 1 n ) 1 n + 1 + a 1 n + 1 a 1 n .
(2.4)

It is well known that for |x|<1,

ln(1+x)= m = 1 ( 1 ) m 1 x m m and 1 1 x = m = 0 x m .

Developing expression (2.4) into power series expansion in 1/n, we obtain

r 1 (n) r 1 (n+1)= ( 1 2 a 1 ) 1 n 2 + ( a 1 2 3 ) 1 n 3 + ( 3 4 a 1 ) 1 n 4 +O ( 1 n 5 ) .
(2.5)

From Lemma 1, we see that the rate of convergence of the sequence ( r 1 ( n ) γ ) n N is even higher than the value s satisfying (2.1). By Lemma 1, we have

  1. (i)

    If a 1 1 2 , then the rate of convergence of ( r 1 ( n ) γ ) n N is n 1 since

    lim n n ( r 1 ( n ) γ ) = 1 2 a 1 0.
  2. (ii)

    If a 1 = 1 2 , from (2.5) we have

    r 1 (n) r 1 (n+1)= 1 6 1 n 3 +O ( 1 n 4 ) .

Hence the rate of convergence of ( r 1 ( n ) γ ) n N is n 2 since

lim n n 2 ( r 1 ( n ) γ ) = 1 12 .

We also observe that the fastest possible sequence ( r 1 ( n ) ) n N is obtained only for a 1 = 1 2 .

Just as Lu [9] did, we may repeat the above approach to determine a 1 to a 4 step by step. However, the computations become very difficult when k5. In this paper we use Mathematica software to manipulate symbolic computations.

Let

r k (n)= m = 1 n 1 m lnn R k (n),
(2.6)

then

r k (n) r k (n+1)=ln ( 1 + 1 n ) 1 n + 1 + R k (n+1) R k (n).
(2.7)

It is easy to get the following power series:

ln ( 1 + 1 n ) 1 n + 1 = m = 2 ( 1 ) m m 1 m 1 n m .
(2.8)

Hence the key step is to expand R k (n+1) R k (n) into power series in 1 n . Here we use some examples to explain our method.

Step 1: For example, given a 1 to a 7 , find a 8 . Define

R 8 ( n ) = 1 2 n + n 6 n + n 6 n + 3 5 n n + 3 5 n n + 79 126 n n + 79 126 n n + a 8 = 237 + 1 , 405 a 8 + 1 , 800 n + 1 , 740 a 8 n 630 n 2 + 3 , 780 a 8 n 2 + 3 , 780 n 3 6 ( 79 a 8 + 600 a 8 n + 600 n 2 + 790 a 8 n 2 + 1 , 260 a 8 n 3 + 1 , 260 n 4 ) .
(2.9)

By using Mathematica software (Mathematica Program is very similar to the one given in Remark 3; however, it has a parameter a 8 ), we obtain

R 8 ( n + 1 ) R 8 ( n ) = 1 2 n 2 + 2 3 n 3 3 4 n 4 + 4 5 n 5 5 6 n 6 + 6 7 n 7 7 8 n 8 + 360 , 030 6 , 241 a 8 396 , 900 n 9 + 346 , 440 + 24 , 964 a 8 + 6 , 241 a 8 2 352 , 800 n 10 + O ( 1 n 11 ) .
(2.10)

Substituting (2.8) and (2.10) into (2.7), we get

r 8 ( n ) r 8 ( n + 1 ) = ( 8 9 + 360 , 030 6 , 241 a 8 396 , 900 ) 1 n 9 + ( 9 10 + 346 , 440 + 24 , 964 a 8 + 6 , 241 a 8 2 352 , 800 ) 1 n 10 + O ( 1 n 11 ) .
(2.11)

The fastest possible sequence ( r 8 ( n ) ) n N is obtained only for a 8 = 7 , 230 6 , 241 . At the same time, it follows from (2.11) that

r 8 (n) r 8 (n+1)= 58 , 081 2 , 446 , 472 1 n 10 +O ( 1 n 11 ) ,
(2.12)

the rate of convergence of ( r 8 ( n ) γ ) n N is n 9 since

lim n n 9 ( r 8 ( n ) γ ) = 58 , 081 22 , 018 , 248 .

We can use the above approach to find a k (3k8). Unfortunately, it does not work well for a 9 . Since a 3 = a 2 , a 5 = a 4 and a 7 = a 6 . So, we may conjecture a 9 = a 8 . Now let us check it carefully.

Step 2: Check a 9 = 7 , 230 6 , 241 to a 13 = 306 , 232 , 774 , 533 179 , 081 , 182 , 865 .

Let a 1 ,, a 9 and R 9 (n) be defined in Theorem 1. Applying Mathematica software, we obtain

R 9 ( n + 1 ) R 9 ( n ) = 1 2 n 2 + 2 3 n 3 3 4 n 4 + 4 5 n 5 5 6 n 6 + 6 7 n 7 7 8 n 8 + 8 9 1 n 9 9 10 1 n 10 + 736 , 265 836 , 136 1 n 11 + O ( 1 n 12 ) ,
(2.13)

which is the desired result. Substituting (2.8) and (2.13) into (2.7), we get

r 9 (n) r 9 (n+1)= 262 , 445 9 , 197 , 496 1 n 11 +O ( 1 n 12 ) ,
(2.14)

the rate of convergence of ( r 9 ( n ) γ ) n N is n 10 since

lim n n 10 ( r 9 ( n ) γ ) = 262 , 445 91 , 974 , 960 .

Next, we can use Step 1 to find a 10 , and Step 2 to check a 11 and a 12 . It should be noted that Theorem 2 will provide the other proofs for a 10 and a 11 . So we omit the details here.

Finally, we check a 13 = 306 , 232 , 774 , 533 179 , 081 , 182 , 865 .

R 13 ( n + 1 ) R 13 ( n ) = 1 2 n 2 + 2 3 n 3 3 4 n 4 + 4 5 n 5 5 6 n 6 + 6 7 n 7 7 8 n 8 + 8 9 1 n 9 9 10 1 n 10 + 10 11 1 n 11 11 12 1 n 12 + 12 13 1 n 13 13 14 1 n 14 + 1 , 903 , 648 , 586 , 623 2 , 576 , 034 , 146 , 400 1 n 15 + O ( 1 n 16 ) .
(2.15)

Substituting (2.8) and (2.15) into (2.7), one has

r 13 (n) r 13 (n+1)= 500 , 649 , 950 , 017 2 , 576 , 034 , 146 , 400 1 n 15 +O ( 1 n 16 ) .
(2.16)

Since

lim n n 14 ( r 13 ( n ) γ ) = 71 , 521 , 421 , 431 5 , 152 , 068 , 292 , 800 ,

thus the rate of convergence of ( r 13 ( n ) γ ) n N is n 14 .

This completes the proof of Theorem 1.

Remark 3 In fact, if the assertion a 13 = 306 , 232 , 774 , 533 179 , 081 , 182 , 865 holds, then the other values a j (1j12) must be true. The following Mathematica Program will generate R 13 (n+1) R 13 (n) into power series in 1 n with order 16: Normal[Series[( R 13 [n+1] R 13 [n])/.n1/x,{x,0,16}]]/. x1/n.

Remark 4 It is a very interesting question to find a k for k14. However, it seems impossible by the above method.

3 The proof of Theorem 2

Before we prove Theorem 2, let us give a simple inequality by the Hermite-Hadamard inequality, which plays an important role in the proof.

Lemma 2 Let f be twice derivable with f continuous. If f (x)>0, then

a a + 1 f(x)dx>f(a+1/2).
(3.1)

In the sequel, the notation P k (x) means a polynomial of degree k in x with all of its non-zero coefficients positive, which may be different at each occurrence.

Let us begin to prove Theorem 2. Note r 10 ()=0, it is easy to see

γ r 10 (n)= m = n ( r 10 ( m + 1 ) r 10 ( m ) ) = m = n f(m),
(3.2)

where

f(m)= 1 m + 1 ln ( 1 + 1 m ) R 10 (m+1)+ R 10 (m).

Let D 1 = 2 , 755 , 095 , 121 6 , 762 , 022 , 344 . By using Mathematica software, we have

f (x)+ D 1 1 ( x + 1 ) 13 = P 19 ( x ) ( x 1 ) + 1 , 619 , 906 , 998 , 377 5 , 270 , 931 33 , 810 , 111 , 720 x ( 1 + x ) 13 P 10 ( 1 ) ( x ) P 10 ( 2 ) ( x ) <0,

and

f (x)+ D 1 1 ( x + 1 2 ) 13 = P 22 ( x ) 4 , 226 , 263 , 965 x ( 1 + x ) 2 ( 1 + 2 x ) 13 P 10 ( 3 ) ( x ) P 10 ( 4 ) ( x ) >0.

Hence, we get the following inequalities for x1:

D 1 1 ( x + 1 ) 13 < f (x)< D 1 1 ( x + 1 2 ) 13 .
(3.3)

Applying f()=0, (3.3) and Lemma 2, we get

f ( m ) = m f ( x ) d x D 1 m ( x + 1 2 ) 13 d x = D 1 12 ( m + 1 2 ) 12 D 1 12 m m + 1 x 12 d x .
(3.4)

From (3.1) and (3.4) we obtain

γ r 10 ( n ) m = n D 1 12 m m + 1 x 12 d x = D 1 12 n x 12 d x = D 1 132 1 n 11 .
(3.5)

Similarly, we also have

f ( m ) = m f ( x ) d x D 1 m ( x + 1 ) 13 d x = D 1 12 ( m + 1 ) 12 D 1 12 m + 1 m + 2 x 12 d x

and

γ r 10 ( n ) m = n D 1 12 m + 1 m + 2 x 12 d x = D 1 12 n + 1 x 12 d x = D 1 132 1 ( n + 1 ) 11 .
(3.6)

Combining (3.5) and (3.6) completes the proof of (1.6).

Note r 11 ()=0, it is easy to deduce

r 11 (n)γ= m = n ( r 11 ( m ) r 11 ( m + 1 ) ) = m = n g(m),
(3.7)

where

g(m)=ln ( 1 + 1 m ) 1 m + 1 R 11 (m)+ R 11 (m+1).

We write D 2 = 20 , 169 , 451 24 , 495 , 240 . By using Mathematica software, we have

g (x) D 2 1 ( x + 1 ) 14 = P 18 ( x ) 24 , 495 , 240 x 3 ( 1 + x ) 14 P 8 ( 1 ) ( x ) P 8 ( 2 ) ( x ) >0

and

g ( x ) D 2 1 ( x + 1 2 ) 14 = P 19 ( x ) ( x 1 ) + 4 , 622 , 005 , 677 , 839 , 353 , 997 , 724 , 676 , 307 , 741 6 , 123 , 810 x 3 ( 1 + x ) 3 ( 1 + 2 x ) 14 P 8 ( 3 ) ( x ) P 8 ( 4 ) ( x ) < 0 .

Hence, for x1,

D 2 1 ( x + 1 ) 14 < g (x)< D 2 1 ( x + 1 2 ) 14 .
(3.8)

Applying g()=0, (3.8) and (3.1), we get

g ( m ) = m g ( x ) d x D 2 m ( x + 1 2 ) 14 d x = D 2 13 ( m + 1 2 ) 13 D 2 13 m m + 1 x 13 d x .
(3.9)

It follows from (3.7) and (3.9) that

r 11 ( n ) γ m = n D 2 13 m m + 1 x 13 d x = D 2 13 n x 13 d x = D 2 156 1 n 12 .
(3.10)

Finally,

g ( m ) = m g ( x ) d x D 2 m ( x + 1 ) 14 d x = D 2 13 ( m + 1 ) 13 D 2 13 m + 1 m + 2 x 13 d x

and

r 11 ( n ) γ m = n D 2 13 m + 1 m + 2 x 13 d x = D 2 13 n + 1 x 13 d x = D 2 156 1 ( n + 1 ) 12 .
(3.11)

Combining (3.10) and (3.11) completes the proof of (1.7).

Remark 5 As an example, we give Mathematica Program for the proof of the left-hand side of (3.3):

  1. (i)

    Together [D[f[x],{x,1}]+ D 1 ( x + 1 ) 13 ];

  2. (ii)

    Take out the numerator P[x] of the above rational function, then manipulate the program: Apart [P[x]/(x1)].

Appendix

For the reader’s convenience, we rewrite R k (n) (k13) with minimal denominators as follows.

R 1 ( n ) = 1 2 n , R 3 ( n ) = 1 2 n 1 12 1 n 2 , R 5 ( n ) = 1 2 n 5 6 ( 1 + 10 n 2 ) , R 7 ( n ) = 1 2 n 79 1 , 200 1 n 2 147 400 ( 10 + 21 n 2 ) , R 9 ( n ) = 1 2 n 7 ( 871 + 790 n 2 ) 20 ( 241 + 3 , 990 n 2 + 3 , 318 n 4 ) , R 11 ( n ) = 1 2 n 52 , 489 894 , 348 1 n 2 1 , 237 , 227 , 621 + 584 , 280 , 400 n 2 4 , 471 , 740 ( 3 , 549 + 13 , 020 n 2 + 5 , 302 n 4 ) , R 13 ( n ) = 1 2 n 39 , 577 , 260 , 671 + 66 , 288 , 226 , 620 n 2 + 15 , 762 , 446 , 700 n 4 1 , 260 ( 20 , 169 , 451 + 434 , 410 , 620 n 2 + 646 , 328 , 298 n 4 + 150 , 118 , 540 n 6 ) , R 2 ( n ) = 3 6 n + 1 , R 4 ( n ) = 13 + 30 n 6 ( 1 + 6 n + 10 n 2 ) , R 6 ( n ) = 5 ( 281 + 348 n + 756 n 2 ) 6 ( 79 + 600 n + 790 n 2 + 1 , 260 n 3 ) , R 8 ( n ) = 964 , 337 + 2 , 646 , 000 n + 2 , 599 , 730 n 2 + 2 , 621 , 220 n 3 20 ( 19 , 039 + 144 , 600 n + 315 , 210 n 2 + 303 , 660 n 3 + 262 , 122 n 4 ) , R 10 ( n ) = ( 7 ( 108 , 237 , 701 + 208 , 886 , 046 n + 523 , 341 , 290 n 2 R 10 ( n ) = + 210 , 464 , 400 n 3 + 230 , 000 , 760 n 4 ) ) R 10 ( n ) = / ( 20 ( 12 , 649 , 849 + 107 , 768 , 934 n + 209 , 431 , 110 n 2 R 10 ( n ) = + 395 , 365 , 320 n 3 + 174 , 158 , 502 n 4 + 161 , 000 , 532 n 5 ) ) , R 12 ( n ) = ( 3 , 604 , 759 , 235 , 968 , 501 + 11 , 032 , 319 , 618 , 513 , 046 n R 12 ( n ) = + 17 , 366 , 281 , 558 , 290 , 420 n 2 + 19 , 958 , 033 , 982 , 902 , 400 n 3 R 12 ( n ) = + 7 , 661 , 417 , 445 , 218 , 460 n 4 + 4 , 964 , 130 , 389 , 017 , 800 n 5 ) R 12 ( n ) = / ( 1 , 260 ( 1 , 058 , 674 , 313 , 539 + 9 , 019 , 254 , 081 , 474 n R 12 ( n ) = + 22 , 801 , 779 , 033 , 180 n 2 + 33 , 088 , 387 , 754 , 520 n 3 + 33 , 925 , 126 , 033 , 722 n 4 R 12 ( n ) = + 13 , 474 , 242 , 079 , 452 n 5 + 7 , 879 , 572 , 046 , 060 n 6 ) ) .