Skip to main content

Advertisement

Log in

Attention-Deficit Hyperactivity Disorder and Pharmacotherapy—Past, Present, and Future: A Review of the Changing Landscape of Drug Therapy

  • Special Section on Pediatrics: Review
  • Published:
Therapeutic Innovation & Regulatory Science Aims and scope Submit manuscript

Abstract

Attention-deficit hyperactivity disorder (ADHD) is the most common neurobiological disorder in children. Efficacy of pharmacotherapy in treating ADHD symptoms has generally been considerable with at least three-fourths of individuals benefiting from pharmacotherapy, typically in the form of stimulants. In this review, we begin by briefly reviewing the history of pharmacotherapy in relation to ADHD, before focusing (primarily) on the state of the field on themes such as biophysiology, pharmacokinetics, and pharmacogenomics. We conclude with a summary of emerging clinical and research studies, particularly the potential role for precision therapy in matching ADHD patients and drug types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thomas R, Sanders S, Doust J, Beller E, Glasziou P. Prevalence of attention-deficit/hyperactivity disorder: a systematic review and meta-analysis. Pediatrics. 2015;135:e994–e1001.

    Article  PubMed  Google Scholar 

  2. Polanczyk GV, Willcutt EG, Salum GA, Kieling C, Rohde LA. ADHD prevalence estimates across three decades: an updated systematic review and meta-regression analysis. Int J Epidemiol. 2014;43:434–442.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mannuzza S, Klein RG. Long-term prognosis in attention-deficit/hyperactivity disorder. Child Adolesc Psychiatr Clin N Am. 2000;9:711–726.

    Article  CAS  PubMed  Google Scholar 

  4. Birnbaum HG, Kessler RC, Lowe SW, et al. Costs of attention deficit-hyperactivity disorder (ADHD) in the US: excess costs of persons with ADHD and their family members in 2000. Curr Med Res Opin. 2005;21:195–205.

    Article  PubMed  Google Scholar 

  5. Pliszka S. Non-stimulant treatment of attention-deficit/hyperactivity disorder. CNS Spectr. 2003;8:253–258.

    Article  PubMed  Google Scholar 

  6. Elia J, Kingsley R, Lam C, et al. Pharmacological treatment and prognosis of ADHD. In: Hechtman L, ed. ADHD: Clinical Management of Attention Deficit Hyperactivity Disorder. London: Future Medicine; 2013:72–102.

    Chapter  Google Scholar 

  7. Thorpy MJ, Billiard M. Sleepiness: Causes, Consequences and Treatment. Cambridge: Cambridge University Press; 2011.

    Book  Google Scholar 

  8. Bradley C. The behavior of children receiving benzedrine. Am J Psychiatry. 1937;94:577–585.

    Article  Google Scholar 

  9. Bradley C, Bowen M. Amphetamine (benzedrine) therapy of children’s behavior disorders. Am J Orthopsychiatry. 1941;11:92.

    Article  Google Scholar 

  10. Strohl MP. Bradley’s Benzedrine studies on children with behavioral disorders. Yale J Biol Med. 2011;84:27.

    PubMed  PubMed Central  Google Scholar 

  11. Lange KW, Reichl S, Lange KM, Tucha L, Tucha O. The history of attention deficit hyperactivity disorder. Atten Defic Hyperact Disord. 2010;2:241–255.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Perel J, Dayton P, Methylphenidate EU, Forrest I. Psychotherapeutic Drugs. Part II. New York: Marcel Dekker; 1976.

    Google Scholar 

  13. Morton WA, Stockton GG. Methylphenidate abuse and psychiatric side effects. Prim Care Companion J Clin Psychiatry. 2000;2:159.

    Article  PubMed  PubMed Central  Google Scholar 

  14. American Psychiatric Association. Diagnostic and Statistical Manual of Disorders. Washington, DC: American Psychiatric Association; 1968.

    Google Scholar 

  15. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Third Edition. Washington, DC: American Psychiatric Association; 1980.

    Google Scholar 

  16. Spencer TJ, Brown A, Seidman LJ, et al. Effect of psychostimulants on brain structure and function in ADHD: a qualitative literature review of magnetic resonance imaging-based neuroimaging studies. J Clin Psychiatry. 2013;74:902–917.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Swanson JM, Kinsbourne M, Nigg J, et al. Etiologic subtypes of attention-deficit/hyperactivity disorder: brain imaging, molecular genetic and environmental factors and the dopamine hypothesis. Neuropsychol Rev. 2007;17:39–59.

    Article  PubMed  Google Scholar 

  18. Maltezos S, Horder J, Coghlan S, et al. Glutamate/glutamine and neuronal integrity in adults with ADHD: a proton MRS study. Transl Psychiatry. 2014;4:e373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Frazer KA, Ballinger DG, Cox DR, et al. A second generation human haplotype map of over 3.1 million SNPs. Nature. 2007;449:851–861.

    Article  CAS  PubMed  Google Scholar 

  20. Leucht S, Hierl S, Kissling W, Dold M, Davis JM. Putting the efficacy of psychiatric and general medicine medication into perspective: review of meta-analyses. Br J Psychiatry. 2012;200(2): 97–106.

    Article  PubMed  Google Scholar 

  21. Banaschewski T, Coghill D, Santosh P, et al. Long-acting medications for the treatment of hyperkinetic disorders-a systematic review and European treatment guideline. Part 1: overview and recommendations [in German]. Zeitschrift fur Kinder-und Jugendpsychiatrie und Psychotherapie. 2008;36:81–94; quiz 94-85.

    Article  PubMed  Google Scholar 

  22. Wigal T, Greenhill L, Chuang S, et al. Safety and tolerability of methylphenidate in preschool children with ADHD. J Am Acad Child Adolesc Psychiatry. 2006;45:1294–1303.

    Article  PubMed  Google Scholar 

  23. Kimko H, Gibiansky E, Gibiansky L, et al. Population pharmacodynamic modeling of various extended-release formulations of methylphenidate in children with attention deficit hyperactivity disorder via meta-analysis. J Pharmacokinet Pharmacodyn. 2012;39:161–176.

    Article  CAS  PubMed  Google Scholar 

  24. Faraone SV, Buitelaar J. Comparing the efficacy of stimulants for ADHD in children and adolescents using meta-analysis. Eur Child Adolesc Psychiatry. 2010;19:353–364.

    Article  PubMed  Google Scholar 

  25. Faraone SV. Understanding the effect size of lisdexamfetamine dimesylate for treating ADHD in children and adults. J Atten Disord. 2012;16:128–137.

    Article  PubMed  Google Scholar 

  26. Frazier TW, Weiss M, Hodgkins P, Manos MJ, Landgraf JM, Gibbins C. Time course and predictors of health-related quality of life improvement and medication satisfaction in children diagnosed with attention-deficit/hyperactivity disorder treated with the methylphenidate transdermal system. J Child Adolesc Psychopharmacol. 2010;20:355–364.

    Article  PubMed  Google Scholar 

  27. Daviss WB, Birmaher B, Diler RS, Mintz J. Does pharmacotherapy for attention-deficit/hyperactivity disorder predict risk of later major depression? J Child Adolesc Psychopharmacol. 2008;18:257–264.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Biederman J, Monuteaux MC, Spencer T, Wilens TE, Faraone SV. Do stimulants protect against psychiatric disorders in youth with ADHD? A 10-year follow-up study. Pediatrics. 2009;124:71–78.

    Article  PubMed  Google Scholar 

  29. Lichtenstein P, Halldner L, Zetterqvist J, et al. Medication for attention deficit-hyperactivity disorder and criminality. N Engl J Med. 2012;367:2006–2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Krause J, la Fougere C, Krause K-H, Ackenheil M, St H D. Influence of striatal dopamine transporter availability on the response to methylphenidate in adult patients with ADHD. Eur Arch Psychiatry Clin Neurosci. 2005;255:428–431.

    Article  PubMed  Google Scholar 

  31. Fusar-Poli P, Byrne M, Badger S, Valmaggia L, McGuire P. Outreach and support in South London (OASIS), 2001–2011: ten years of early diagnosis and treatment for young individuals at high clinical risk for psychosis. Eur Psychiatry. 2013;28:315–326.

    Article  CAS  PubMed  Google Scholar 

  32. Kuczenski R, Segal DS. Effects of methylphenidate on extracellular dopamine, serotonin, and norepinephrine: comparison with amphetamine. J Neurochem. 1997;68:2032–2037.

    Article  CAS  PubMed  Google Scholar 

  33. Volkow ND, Wang G-J, Tomasi D, et al. Methylphenidate-elicited dopamine increases in ventral striatum are associated with long-term symptom improvement in adults with attention deficit hyperactivity disorder. J Neurosci. 2012;32:841–849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rubia K, Halari R, Mohammad A-M, Taylor E, Brammer M. Methylphenidate normalizes frontocingulate underactivation during error processing in attention-deficit/hyperactivity disorder. Biol Psychiatry. 2011;70:255–262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hart H, Radua J, Mataix-Cols D, Rubia K. Meta-analysis of fMRI studies of timing in attention-deficit hyperactivity disorder (ADHD). Neurosci Biobehav Rev. 2012;36:2248–2256.

    Article  PubMed  Google Scholar 

  36. Wong CG, Stevens MC. The effects of stimulant medication on working memory functional connectivity in attention-deficit/hyperactivity disorder. Biol Psychiatry. 2012;71:458–466.

    Article  CAS  PubMed  Google Scholar 

  37. Hester R, Nandam LS, O’Connell RG, et al. Neurochemical enhancement of conscious error awareness. J Neurosci. 2012;32:2619–2627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bender S, Resch F, Klein C, et al. Influence of stimulant medication and response speed on lateralization of movement-related potentials in attention-deficit/hyperactivity disorder. PLoS One. 2012;7:e39012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Marquand AF, O’Daly OG, De Simoni S, et al. Dissociable effects of methylphenidate, atomoxetine and placebo on regional cerebral blood flow in healthy volunteers at rest: a multi-class pattern recognition approach. Neuroimage. 2012;60:1015–1024.

    Article  CAS  PubMed  Google Scholar 

  40. Bymaster FP, Katner JS, Nelson DL, et al. Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology. 2002;27:699–711.

    Article  CAS  PubMed  Google Scholar 

  41. Ludolph AG, Udvardi PT, Schaz U, et al. Atomoxetine acts as an NMDA receptor blocker in clinically relevant concentrations. Br J Pharmacol. 2010;160:283–291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chamberlain SR, Hampshire A, Müller U, et al. Atomoxetine modulates right inferior frontal activation during inhibitory control: a pharmacological functional magnetic resonance imaging study. Biol Psychiatry. 2009;65:550–555.

    Article  CAS  PubMed  Google Scholar 

  43. Wang M, Ramos BP, Paspalas CD, et al. α2A-adrenoceptors strengthen working memory networks by inhibiting cAMP-HCN channel signaling in prefrontal cortex. Cell. 2007;129:397–410.

    Article  CAS  PubMed  Google Scholar 

  44. Kamisaki Y, Hamahashi T, Hamada T, Maeda K, Itoh T. Presynaptic inhibition by clonidine of neurotransmitter amino acid release in various brain regions. Eur J Pharmacol. 1992;217:57–63.

    Article  CAS  PubMed  Google Scholar 

  45. Miller EM, Pomerleau F, Huettl P, Gerhardt GA, Glaser PE. Aberrant glutamate signaling in the prefrontal cortex and striatum of the spontaneously hypertensive rat model of attention-deficit/hyperactivity disorder. Psychopharmacology. 2014;231:3019–3029.

    Article  CAS  PubMed  Google Scholar 

  46. Elia J, Kingsley R, Lam C, et al. Pharmacological treatment and prognosis of ADHD. In: Hechtman L, ed. ADHD: Clinical Management of Attention Deficit Hyperactivity Disorder. London: Future Medicine; 2013:73–102.

    Google Scholar 

  47. Rapport MD, Moffitt C. Attention deficit/hyperactivity disorder and methylphenidate: a review of height/weight, cardiovascular, and somatic complaint side effects. Clinical Psychol Rev. 2002;22:1107–1131.

    Article  Google Scholar 

  48. Swanson JM, Elliott GR, Greenhill LL, et al. Effects of stimulant medication on growth rates across 3 years in the MTA follow-up. J Am Acad Child Adolesc Psychiatry. 2007;46:1015–1027.

    Article  PubMed  Google Scholar 

  49. Michelson D, Read HA, Ruff DD, Witcher J, Zhang S, McCracken J. CYP2D6 and clinical response to atomoxetine in children and adolescents with ADHD. J Am Acad Child Adolesc Psychiatry. 2007;46:242–251.

    Article  PubMed  Google Scholar 

  50. Daviss WB, Patel NC, Robb AS, et al. Clonidine for attention-deficit/hyperactivity disorder: II. ECG changes and adverse events analysis. J Am Acad Child Adoles Psychiatry. 2008;47:189–198.

    Article  Google Scholar 

  51. Winterstein AG, Gerhard T, Kubilis P, et al. Cardiovascular safety of central nervous system stimulants in children and adolescents: population based cohort study. BMJ. 2012;345:e4627.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Bangs ME, Jin L, Zhang S, et al. Hepatic events associated with atomoxetine treatment for attention-deficit hyperactivity disorder. Drug Saf. 2008;31:345–354.

    Article  CAS  PubMed  Google Scholar 

  53. Lim JR, Faught PR, Chalasani NP, Molleston JP. Severe liver injury after initiating therapy with atomoxetine in two children. J Pediatr. 2006;148:831–834.

    Article  PubMed  Google Scholar 

  54. Kieling C, Genro JP, Hutz MH, Rohde LA. A current update on ADHD pharmacogenomics. Pharmacogenomics. 2010;11:407–419.

    Article  CAS  PubMed  Google Scholar 

  55. McGough JJ. Attention deficit hyperactivity disorder pharmacogenetics: the dopamine transporter and D4 receptor. Pharmacogenomics. 2012;13:365–368.

    Article  CAS  PubMed  Google Scholar 

  56. Adriani W, Leo D, Guarino M, et al. Short-term effects of adolescent methylphenidate exposure on brain striatal gene expression and sexual/endocrine parameters in male rats. Ann N Y Acad Sci. 2006;1074:52–73.

    Article  CAS  PubMed  Google Scholar 

  57. Bruxel EM, Akutagava-Martins GC, Salatino-Oliveira A, et al. ADHD pharmacogenetics across the life cycle: new findings and perspectives. Am J Med Genet B Neuropsychiatr Genet. 2014;165:263–282.

    Article  CAS  Google Scholar 

  58. Sasaki T, Ito H, Kimura Y, et al. Quantification of dopamine transporter in human brain using PET with 18F-FE-PE2I. J Nucl Med. 2012;53:1065–1073.

    Article  CAS  PubMed  Google Scholar 

  59. Froehlich TE, Epstein JN, Nick TG, et al. Pharmacogenetic predictors of methylphenidate dose-response in attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry. 2011;50:1129–1139.e2.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Pasini A, Sinibaldi L, Paloscia C, et al. Neurocognitive effects of methylphenidate on ADHD children with different DAT genotypes: a longitudinal open label trial. Eur J of Paediatr Neurol. 2013;17:407–414.

    Article  CAS  Google Scholar 

  61. Kambeitz J, Romanos M, Ettinger U. Meta-analysis of the association between dopamine transporter genotype and response to methylphenidate treatment in ADHD. Pharmacogen J. 2014;14:77–84.

    Article  CAS  Google Scholar 

  62. Kim B-N, Kim J-W, Hong SB, Cho S-C, Shin M-S, Yoo H-J. Possible association of norepinephrine transporter-3081 (A/T) polymorphism with methylphenidate response in attention deficit hyperactivity disorder. Behav Brain Funct. 2010;6:57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lee SH, Kim SW, Lee MG, et al. Lack of association between response of OROS-methylphenidate and norepinephrine transporter (SLC6A2) polymorphism in Korean ADHD. Psychiatry Res. 2011;186:338–344.

    Article  CAS  PubMed  Google Scholar 

  64. Nelson MR, Wegmann D, Ehm MG, et al. An abundance of rare functional variants in 202 drug target genes sequenced in 14,002 people. Science. 2012;337:100–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Elia J, Glessner JT, Wang K, et al. Genome-wide copy number variation study associates metabotropic glutamate receptor gene networks with attention deficit hyperactivity disorder. Nat Genet. 2012;44:78–84.

    Article  CAS  Google Scholar 

  66. Kapur S, Phillips A, Insel T. Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it. Mol Psychiatry. 2012;17:1174–1179.

    Article  CAS  PubMed  Google Scholar 

  67. Graul AT, M.; Castaner J. NS-105 Cognition enhancer, nootropic agent. Drugs of the future. 1997;22:639–640.

    Article  Google Scholar 

  68. Oka M, Itoh Y, Shimidzu T, Ukai Y, Yoshikuni Y, Kimura K. Involvement of metabotropic glutamate receptors in Gi- and Gs-dependent modulation of adenylate cyclase activity induced by a novel cognition enhancer NS-105 in rat brain. Brain Res. 1997;754:121–130.

    Article  CAS  PubMed  Google Scholar 

  69. Oka M, Itoh Y, Tatsumi S, et al. A novel cognition enhancer NS-105 modulates adenylate cyclase activity through metabotropic glutamate receptors in primary neuronal culture. Naunyn-Schmiedebergs Arch Pharmacol. 1997;356:189–196.

    Article  CAS  PubMed  Google Scholar 

  70. Hirouchi M, Oka M, Itoh Y, Ukai Y, Kimura K. Role of metabotropic glutamate receptor subclasses in modulation of adenylyl cyclase activity by a nootropic NS-105. Eur J Pharmacol. 2000;387:9–17.

    Article  CAS  PubMed  Google Scholar 

  71. Shimidzu T, Itoh Y, Oka M, et al. Effect of a novel cognition enhancer NS-105 on learned helplessness in rats: possible involvement of GABA(B) receptor up-regulation after repeated treatment. Eur J Pharmacol. 1997;338:225–232.

    Article  CAS  PubMed  Google Scholar 

  72. Ogasawara T, Itoh Y, Tamura M, et al. Involvement of cholinergic and GABAergic systems in the reversal of memory disruption by NS-105, a cognition enhancer. Pharmacol Biochem Behav. 1999;64:41–52.

    Article  CAS  PubMed  Google Scholar 

  73. Yanagita T, Takada K. Study on the dependence potential of (+)-5-oxo-d-prolinepiperidinamide monohydrate (NS-105) in rhesus monkeys and rats. Pharmacometrics. 1998;55:61–69.

    CAS  Google Scholar 

  74. Yu W, Gwinn M, Clyne M, Yesupriya A, Khoury MJ. A navigator for human genome epidemiology. Nat Genet. 2008;40:124–125.

    Article  CAS  PubMed  Google Scholar 

  75. De Reuck J, Van Vleymen B. The clinical safety of high-dose piracetam—its use in the treatment of acute stroke. Pharmacopsychiatry. 1999;32(suppl 1):33–37.

    Article  PubMed  Google Scholar 

  76. Malykh AG, Sadaie MR. Piracetam and piracetam-like drugs. Drugs. 2010;70:287–312.

    Article  CAS  PubMed  Google Scholar 

  77. Pranzatelli MR, Tate ED, Galvan I, Wheeler A. Controlled pilot study of piracetam for pediatric opsoclonus-myoclonus. Clin Neuropharmacol. 2001;24:352–357.

    Article  CAS  PubMed  Google Scholar 

  78. Kumagai Y, Yokota S, Isawa S, Murasaki M, Mukai H, Miyatake S. Comparison of pharmacokinetics of NS-105, a novel agent for cerebrovascular disease, in elderly and young subjects. Int J Clin Pharmacol Res. 1999;19:1–8.

    CAS  PubMed  Google Scholar 

  79. Rapport MD, Denney C. Titrating methylphenidate in children with attention-deficit/hyperactivity disorder: is body mass predictive of clinical response? J Am Acad Child Adolesc Psychiatry. 1997;36:523–530.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Hakonarson MD, PhD.

Additional information

Author Note

This study was presented at the Pediatric Research Conference, November 6–7, 2014

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Connolly, J.J., Glessner, J.T., Kao, C. et al. Attention-Deficit Hyperactivity Disorder and Pharmacotherapy—Past, Present, and Future: A Review of the Changing Landscape of Drug Therapy. Ther Innov Regul Sci 49, 632–642 (2015). https://doi.org/10.1177/2168479015599811

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/2168479015599811

Keywords

Navigation