Skip to main content

Advertisement

Log in

Methylseleninic Acid Suppresses Breast Cancer Growth via the JAK2/STAT3 Pathway

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

A Correction to this article was published on 20 October 2020

This article has been updated

Abstract

Previous studies show that methylseleninic acid (MSA), which is the most common selenium derivative used as a drug in humans, exerts specific cytotoxic effects in several cancer cell types. However, the complex mechanism of these effects has not been fully elucidated. Here, we demonstrate by Cell Counting Kit-8 in mouse breast cancer cell line 4T1 that MSA inhibits cell viability in a concentration-dependent (5, 10, 20 μmol/L) and time-dependent (6, 12, 24 hours) manner. Flow cytometry, Western blot, and Reverse Transcription-Polymerase Chain Reaction (RT-PCR) analyses indicated that MSA inhibits cancer cell invasion and induces apoptosis by the activation of caspase-3, poly ADP ribose polymerase 1 (PARP1), and BCL2-associated X. Furthermore, MSA demonstrated anticancer activity by inhibiting the Janus kinase 2/signal transducers and activators of transcription 3 (JAK2/STAT3) pathway. The MSA treatment for 24 hours decreased the phosphorylation of JAK2 and STAT3 in 4T1 cells by Western blot. We also confirmed this with the use of a JAK2 chemical inhibitor, AG490, as a positive control. In a 4T1 orthotopic allograft model, morphological and TdT-mediated dUTP nick-end labeling analyses showed that MSA treatment (1.5 mg/kg/weight) for 28 days inhibits tumor growth consistent with the clinical anticancer drug cyclophosphamide. Our observations demonstrate that MSA is a potent anticancer drug in breast cancer and uncovered a key role of the JAK2/STAT3 pathway in modulating tumor growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 20 October 2020

    Due to an unfortunate oversight, author names have been misspelt.

References

  1. Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

    Article  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7–30.

    PubMed  Google Scholar 

  3. Cheng G, Zielonka J, Dranka BP, et al. Mitochondria-targeted drugs synergize with 2-deoxyglucose to trigger breast cancer cell death. Cancer Res. 2012;72(10):2634–2644.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Wu H, Zhu H, Liu DX, et al. Silencing of elongation factor-2 kinase potentiates the effect of 2-deoxy-D-glucose against human glioma cells through blunting of autophagy. Cancer Res. 2009;69(6):2453–2460.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Vinceti M, Dennert G, Crespi CM, et al. Selenium for preventing cancer. Cochrane Database Syst Rev. 2014;(3):Cd005195.

    Google Scholar 

  6. Labunskyy VM, Hatfield DL, Gladyshev VN. Selenoproteins: molecular pathways and physiological roles. Physiol Rev. 2014;94(3):739–777.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Roman M, Jitaru P, Barbante C. Selenium biochemistry and its role for human health. Metallomics. 2014;6(1):25–54.

    CAS  PubMed  Google Scholar 

  8. Russo MW, Murray SC, Wurzelmann JI, et al. Plasma selenium levels and the risk of colorectal adenomas. Nutr Cancer. 1997;28(2):125–129.

    CAS  PubMed  Google Scholar 

  9. Navarro Silvera SA, Rohan TE. Trace elements and cancer risk: a review of the epidemiologic evidence. Cancer Causes Control. 2007;18(1):7–27.

    PubMed  Google Scholar 

  10. Lippman SM, Klein EA, Goodman PJ, et al. Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA. 2009;301(1):39–51.

    CAS  PubMed  Google Scholar 

  11. Li GX, Lee HJ, Wang Z, et al. Superior in vivo inhibitory efficacy of methylseleninic acid against human prostate cancer over selenomethionine or selenite. Carcinogenesis. 2008;29(5):1005–1012.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lu J, Jiang C. Selenium and cancer chemoprevention: hypotheses integrating the actions of selenoproteins and selenium metabolites in epithelial and non-epithelial target cells. Antioxid Redox Signal. 2005;7(11–12):1715–1727.

    PubMed  Google Scholar 

  13. Zhang T, Zhao G, Zhu X, et al. Sodium selenite induces apoptosis via ROS-mediated NF-κB signaling and activation of the Bax-caspase-9-caspase-3 axis in 4T1 cells. J Cell Physiol. 2018.

  14. Kong L, Yuan Q, Zhu H, et al. The suppression of prostate LNCaP cancer cells growth by Selenium nanoparticles through Akt/Mdm2/AR controlled apoptosis. Biomaterials. 2011;32(27):6515–6522.

    CAS  PubMed  Google Scholar 

  15. Brigelius-Flohe R. Selenium compounds and selenoproteins in cancer. Chem Biodiversity. 2008;5(3):389–395.

    CAS  Google Scholar 

  16. Cai Z, Dong L, Song C, et al. Methylseleninic acid provided at nutritional selenium levels inhibits angiogenesis by down-regulating integrin β3 signaling. Sci Rep. 2017;7(1):9445.

    PubMed  PubMed Central  Google Scholar 

  17. Ch RMB, He G. Chemical form of selenium, critical metabolites, and cancer prevention.%A Ip C. Cancer Res. 1991;51(2):595–600.

    Google Scholar 

  18. Sinha I, Null K, Wolter W, et al. Methylseleninic acid downregulates hypoxia-inducible factor-1alpha in invasive prostate cancer. Int J Cancer. 2012;130(6):1430–1439.

    CAS  PubMed  Google Scholar 

  19. Tarrado-Castellarnau M, Cortes R, Zanuy M, et al. Methylseleninic acid promotes antitumour effects via nuclear FOXO3a translocation through Akt inhibition. Pharmacol Res. 2015;102:218–234.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hu Y, Hong Y, Xu Y, et al. Inhibition of the JAK/STAT pathway with ruxolitinib overcomes cisplatin resistance in non-small-cell lung cancer NSCLC. Apoptosis. 2014;19(11):1627–1636.

    CAS  PubMed  Google Scholar 

  21. Buettner R, Mora LB, Jove R. Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. Clin Cancer Res. 2002;8(4):945–954.

    CAS  PubMed  Google Scholar 

  22. Park J, Kim J, Park B, et al. Novel identification of STAT1 as a crucial mediator of ETV6-NTRK3-induced tumorigenesis. Oncogene. 2018;37(17):2270–2284.

    CAS  PubMed  Google Scholar 

  23. Thomas SJ, Snowden JA, Zeidler MP, Danson SJ. The role of JAK/STAT signalling in the pathogenesis, prognosis and treatment of solid tumours. Br J Cancer. 2015;113(3):365–371.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kowshik J, Baba AB, Giri H, et al. Astaxanthin inhibits JAK/STAT-3 signaling to abrogate cell proliferation, invasion and angiogenesis in a hamster model of oral cancer. PLoS One. 2014;9(10):e109114.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang F, Chen JG, Wang LL, et al. Up-regulation of LINC00346 inhibits proliferation of non-small cell lung cancer cells through mediating JAK-STAT3 signaling pathway. Eur Rev Med Pharmacol Sci. 2017;21(22):5135–5142.

    CAS  PubMed  Google Scholar 

  26. Xu L, Meng X, Xu N, et al. Gambogenic acid inhibits fibroblast growth factor receptor signaling pathway in erlotinib-resistant non-small-cell lung cancer and suppresses patient-derived xenograft growth. Cell Death Dis. 2018;9(3):262.

    PubMed  PubMed Central  Google Scholar 

  27. Orgaz JL, Pandya P, Dalmeida R, et al. Diverse matrix metalloproteinase functions regulate cancer amoeboid migration. Nat Commun. 2014;5:4255.

    CAS  PubMed  Google Scholar 

  28. Chabottaux V, Noel A. Breast cancer progression: insights into multifaceted matrix metalloproteinases. Clin Exp Metastasis. 2007;24(8):647–656.

    CAS  PubMed  Google Scholar 

  29. Ewer MS, Ewer SM. Cardiotoxicity of anticancer treatments. Nat Rev Cardiol. 2015;12(9):547–558.

    CAS  PubMed  Google Scholar 

  30. Schlitt A, Jordan K, Vordermark D, et al. Cardiotoxicity and oncological treatments. Deutsches Arzteblatt Int. 2014;111(10):161–168.

    Google Scholar 

  31. Duntas LH, Benvenga S. Selenium: an element for life. Endocrine. 2015;48(3):756–775.

    CAS  PubMed  Google Scholar 

  32. Khalkar P, Ali HA, Codó P, et al. Selenite and methylseleninic acid epigenetically affects distinct gene sets in myeloid leukemia: a genome wide epigenetic analysis. Free Radic Biol Med. 2018;117:247–257.

    CAS  PubMed  Google Scholar 

  33. Ip C, Thompson HJ, Zhu Z, Ganther HE. In vitro and in vivo studies of methylseleninic acid: evidence that a monomethylated selenium metabolite is critical for cancer chemoprevention. Cancer Res. 2000;60(11):2882–2886.

    CAS  PubMed  Google Scholar 

  34. Li W, Guo M, Liu Y, et al. Selenium induces an anti-tumor effect via inhibiting intratumoral angiogenesis in a mouse model of transplanted canine mammary tumor cells. Biological Trace Element Res. 2016;171(2):371–379.

    CAS  Google Scholar 

  35. Johnson DE, O’Keefe RA, Grandis JR. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol. 2018;15(4):234–248.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Buchert M, Burns CJ, Ernst M. Targeting JAK kinase in solid tumors: emerging opportunities and challenges. Oncogene. 2016;35(8):939–951.

    CAS  PubMed  Google Scholar 

  37. Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer. 2009;9(11):798–809.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Yu H, Lee H, Herrmann A, et al. Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat Rev Cancer. 2014;14(11):736–746.

    CAS  PubMed  Google Scholar 

  39. Bournazou E, Bromberg J. Targeting the tumor microenvironment: JAK-STAT3 signaling. JAKSTAT. 2013;2(2):e23828.

    PubMed  PubMed Central  Google Scholar 

  40. Pawlus MR, Wang L, Hu CJ. STAT3 and HIF1alpha cooperatively activate HIF1 target genes in MDA-MB-231 and RCC4 cells. Oncogene. 2014;33(13):1670–1679.

    CAS  PubMed  Google Scholar 

  41. Kim E, Kim M, Woo DH, et al. Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stem-like cells. Cancer Cell. 2013;23(6):839–852.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Hu X, Dutta P, Tsurumi A, et al. Unphosphorylated STAT5A stabilizes heterochromatin and suppresses tumor growth. Proc Natl Acad Sci U S A. 2013;110(25):10213–10218.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changwei Qiu MD, PhD.

Additional information

Authors’ Note

T.Z., G.Z., G.D., and C.Q. conceived and designed the experiments. T.Z., G.Z., K.J., H.W., and C.Q. performed the experiments. T.Z., K.J., H.W., and C.Q. analyzed the data. T.Z., G.Z., G.D., and C.Q. wrote the paper. All authors read and approved the final manuscript. The institutional review board of each institution approved the study protocol. All of the experimental procedures involving animals and their care conformed to the Guide for the Care and Use of Laboratory Animals of the National Veterinary Research. This study was approved by the Huazhong Agricultural University Animal Care and Use Committee. Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, C., Zhang, T., Zhu, X. et al. Methylseleninic Acid Suppresses Breast Cancer Growth via the JAK2/STAT3 Pathway. Reprod. Sci. 26, 829–838 (2019). https://doi.org/10.1177/1933719118815582

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719118815582

Keywords

Navigation