Skip to main content
Log in

Expression of GnRH and Kisspeptin in Primary Cultures of Fetal Rat Brain

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Genetic studies in humans or in vivo studies using animals have shown that kisspeptin released from the hypothalamus controls secretion of gonadotropin-releasing hormone (GnRH) from GnRH neurons, and subsequently GnRH induces gonadotropin secretion from the anterior pituitary. Kisspeptindid not stimulate GnRH expression in the GnRH-producing cell line GT1–7. Thus, we cultured GnRH and kisspeptin neurons from whole fetal rat brain and examined the regulation of GnRH and kisspeptin. Expression of GnRH messenger RNA (mRNA) was unchanged by estradiol (E2) treatment in these primary cultures. In contrast, kisspeptin mRNA expression was increased 2. 00 + 0. 23-fold by E2 treatment. When these cultures were stimulated by kisspeptin-10, GnRH mRNA was significantly increased up to 1. 51 + 0. 35-fold. Expression of GnRH mRNA was also stimulated 1. 84 + 0. 33-fold by GnRH itself. Interestingly, kisspeptin mRNA was significantly increased up to 2. 43 + 0. 40-fold by kisspeptin alone. In addition, kisspeptin mRNA expression was significantly increased by stimulation with GnRH (1. 46 + 0. 21-fold). Our observations demonstrated that kisspeptin, but not GnRH, was upregulated by E2 and that kisspeptin stimulates GnRH mRNA expression in primary cultures of whole fetal rat brain. Furthermore, GnRH and kisspeptin stimulate their own neurons to produce GnRH or kisspeptin, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. de Roux N, Genin E, Carel JC, Matsuda F, Chaussain JL, Milgrom E. Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc Natl Acad Sci U S A. 2003;100(19):10972–10976.

    Article  Google Scholar 

  2. Funes S, Hedrick JA, Vassileva G, et al. The KiSS-1 receptor GPR54 is essential for the development of the murine reproductive system. Biochem Biophys Res Commun. 2003;312(4):1357–1363.

    Article  CAS  Google Scholar 

  3. Seminara SB, Messager S, Chatzidaki EE, et al. The GPR54 gene as a regulator of puberty. N Engl J Med. 2003;349(17):1614–1627.

    Article  CAS  Google Scholar 

  4. Kauffman AS, Park JH, McPhie-Lalmansingh AA, et al. The kisspeptin receptor GPR54 is required for sexual differentiation of the brain and behavior. J Neurosci. 2007;27(33):8826–8835.

    Article  CAS  Google Scholar 

  5. Lapatto R, Pallais JC, Zhang D, et al. Kiss1-/- mice exhibit more variable hypogonadism than Gpr54-/- mice. Endocrinology. 2007;148(10):4927–4936.

    Article  CAS  Google Scholar 

  6. Irwig MS, Fraley GS, Smith JT, et al. Kisspeptin activation of gonadotropin releasing hormone neurons and regulation of KiSS-1 mRNA in the male rat. Neuroendocrinology. 2004;80(4):264–272.

    Article  CAS  Google Scholar 

  7. Kauffman AS. Coming of age in the kisspeptin era: sex differences, development, and puberty. Mol Cell Endocrinol. 2010;324(1-2):51–63.

    Article  CAS  Google Scholar 

  8. Smith JT, Clay CM, Caraty A, Clarke IJ. KiSS-1 messenger ribo-nucleic acid expression in the hypothalamus of the ewe is regulated by sex steroids and season. Endocrinology. 2007;148(3):1150–1157.

    Article  CAS  Google Scholar 

  9. Smith JT, Li Q, Pereira A, Clarke IJ. Kisspeptin neurons in the ovine arcuate nucleus and preoptic area are involved in the pre-ovulatory luteinizing hormone surge. Endocrinology. 2009;150(12):5530–5538.

    Article  CAS  Google Scholar 

  10. Navarro VM, Castellano JM, Fernández-Fernández R, et al. Characterization of the potent luteinizing hormone-releasing activity of KiSS-1 peptide, the natural ligand of GPR54. Endocrinology. 2005;146(1):156–163.

    Article  CAS  Google Scholar 

  11. Novaira HJ, Ng Y, Wolfe A, Radovick S. Kisspeptin increases GnRH mRNA expression and secretion in GnRH secreting neuronal cell lines. Mol Cell Endocrinol. 2009;311(1-2):126–134.

    Article  CAS  Google Scholar 

  12. Sukhbaatar U, Kanasaki H, Mijiddorj T, Oride A, Miyazaki K. Kisspeptin induces expression of gonadotropin-releasing hormone receptor in GnRH-producing GT1–7 cells overexpressing G protein-coupled receptor 54. Gen Comp Endocrinol. 2013;194:94–101.

    Article  CAS  Google Scholar 

  13. Mellon PL, Windle JJ, Goldsmith PC, Padula CA, Roberts JL, Weiner RI. Immortalization of hypothalamic GnRH neurons by genetically targeted tumorigenesis. Neuron. 1990;5(1):1–10.

    Article  CAS  Google Scholar 

  14. Skorupskaite K, George JT, Anderson RA. The kisspeptin-GnRH pathway in human reproductive health and disease. Hum Reprod Update. 2014;20(4):485–500.

    Article  CAS  Google Scholar 

  15. Han SK, Gottsch ML, Lee KJ, et al. Activation of gonadotropin-releasing hormone neurons by kisspeptin as a neuroendocrine switch for the onset of puberty. J Neurosci. 2005;25(49):11349–11356.

    Article  CAS  Google Scholar 

  16. Thompson EL, Patterson M, Murphy KG, et al. Central and peripheral administration of kisspeptin-10 stimulates the hypothalamic-pituitary-gonadal axis. J Neuroendocrinol. 2004;16(10):850–858.

    Article  CAS  Google Scholar 

  17. Terasaka T, Otsuka F, Tsukamoto N, et al. Mutual interaction of kisspeptin, estrogen and bone morphogenetic protein-4 activity in GnRH regulation by GT1–7 cells. Mol Cell Endocrinol. 2013;381(1-2):8–15.

    Article  CAS  Google Scholar 

  18. Shivers BD, Harlan RE, Morrell JI, Pfaff DW. Absence of oes-tradiol concentration in cell nuclei of LHRH-immunoreactive neurones. Nature. 1983;304(5924):345–347.

    Article  CAS  Google Scholar 

  19. Hrabovszky E, Steinhauser A, Barabás K, et al., Estrogen receptor-beta immunoreactivity in luteinizing hormone-releasing hormone neurons of the rat brain. Endocrinology. 2001;142(7):3261–3264.

    Article  CAS  Google Scholar 

  20. Hrabovszky E, Kalló I, Szlávik N, Keller E, Merchenthaler I, Liposits Z. Gonadotropin-releasing hormone neurons express estrogen receptor-beta. J Clin Endocrinol Metab. 2007;92(7):2827–2830.

    Article  CAS  Google Scholar 

  21. Kinoshita MI, Tsukamura H, Adachi S, et al. Involvement of central metastin in the regulation of preovulatory luteinizing hormone surge and estrous cyclicity in female rats. Endocrinology. 2005;146(10):4431–4436.

    Article  CAS  Google Scholar 

  22. Clarkson J, d’Anglemont de Tassigny X, Moreno AS, Colledge WH, Herbison AE. Kisspeptin-GPR54 signaling is essential for preovulatory gonadotropin-releasing hormone neuron activation and the luteinizing hormone surge. J Neurosci. 2008;28(35):8691–8697.

    Article  CAS  Google Scholar 

  23. Adachi S, Yamada S, Takatsu Y, et al. Involvement of anteroven-tral periventricular metastin/kisspeptin neurons in estrogen positive feedback action on luteinizing hormone release in female rats. J Reprod Dev. 2007;53(2):367–378.

    Article  CAS  Google Scholar 

  24. Keen KL, Wegner FH, Bloom SR, Ghatei MA, Terasawa E. An increase in kisspeptin-54 release occurs with the pubertal increase in luteinizing hormone-releasing hormone-1 release in the stalk-median eminence of female rhesus monkeys in vivo. Endocrinology. 2008;149(8):4151–4157.

    Article  CAS  Google Scholar 

  25. Neithardt A, Farshori MP, Shah FB, Catt KJ, Shah BH. Dependence of GnRH-induced phosphorylation of CREB and BAD on EGF receptor transactivation in GT1–7 neuronal cells. J Cell Physiol. 2006;208(3):586–593.

    Article  CAS  Google Scholar 

  26. Krsmanovic LZ, Martinez-Fuentes AJ, Arora KK, et al. Autocrine regulation of gonadotropin-releasing hormone secretion in cultured hypothalamic neurons. Endocrinology. 1999;140(3):1423–1431.

    Article  CAS  Google Scholar 

  27. Clarkson J, Herbison AE. Postnatal development of kisspeptin neurons in mouse hypothalamus; sexual dimorphism and projections to gonadotropin-releasing hormone neurons. Endocrinology. 2006;147(12):5817–5825.

    Article  CAS  Google Scholar 

  28. Uenoyama Y, Inoue N, Pheng V, et al. Ultrastructural evidence of kisspeptin-gonadotrophin-releasing hormone (GnRH) interaction in the median eminence of female rats: implication of axo-axonal regulation of GnRH release. J Neuroendocrinol. 2011;23(10):863–870.

    Article  CAS  Google Scholar 

  29. Smith JT, Acohido BV, Clifton DK, Steiner RA. KiSS-1 neurones are direct targets for leptin in the ob/ob mouse. J Neuroendocrinol. 2006;18(4):298–303.

    Article  CAS  Google Scholar 

  30. Backholer K, Smith J, Clarke IJ. Melanocortins may stimulate reproduction by activating orexin neurons in the dorsomedial hypothalamus and kisspeptin neurons in the preoptic area of the ewe. Endocrinology. 2009;150(12):5488–5497.

    Article  CAS  Google Scholar 

  31. Martin C, Navarro VM, Simavli S, et al. Leptin-responsive GABAergic neurons regulate fertility through pathways that result in reduced kisspeptinergic tone. J Neurosci. 2014;34(17):6047–6056.

    Article  Google Scholar 

  32. Kinsey-Jones JS, Li XF, Knox AM, et al. Down-regulation of hypothalamic kisspeptin and its receptor, Kiss1r, mRNA expression is associated with stress-induced suppression of luteinising hormone secretion in the female rat. J Neuroendocrinol. 2009;21(1):20–29.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haruhiko Kanasaki MD PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukhbaatar, U., Kanasaki, H., Mijiddorj, T. et al. Expression of GnRH and Kisspeptin in Primary Cultures of Fetal Rat Brain. Reprod. Sci. 24, 227–233 (2017). https://doi.org/10.1177/1933719116653679

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719116653679

Keywords

Navigation