Skip to main content

Advertisement

Log in

Mutual Interactions Between GnRH and Kisspeptin in GnRH- and Kiss-1-Expressing Immortalized Hypothalamic Cell Models

  • Reproductive Endocrinology; Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Kisspeptin and gonadotropin-releasing hormone (GnRH) are central regulators of the hypothalamic-pituitary-gonadal axis and control female reproductive functions. Recently established mHypoA-50 and mHypoA-55 cells are immortalized hypothalamic neuronal cell models that originated from the anteroventral periventricular nucleus (AVPV) and arcuate nucleus (ARC) regions of the mouse hypothalamus, respectively. mHypoA-50 or mHypoA-55 cells were stimulated with kisspeptin-10 (KP10) and GnRH, after which the expression of kisspeptin and GnRH was determined. Primary cultures of fetal rat brain cells were also examined. mHypoA-50 and mHypoA-55 cells expressed mRNA for Kiss-1 (which encodes kisspeptin) and GnRH as well as receptors for kisspeptin and GnRH. We found that Kiss-1 mRNA expression was significantly increased in mHypoA-50 AVPV cells by KP10 and GnRH stimulation. Kisspeptin protein expression was also increased by KP10 and GnRH stimulation in these cells. In contrast, GnRH expression was unchanged in mHypoA-50 AVPV cells by KP10 and GnRH stimulation. In mHypoA-55 ARC cells, kisspeptin expression was also significantly increased at the mRNA and protein levels by KP10 and GnRH stimulation; however, GnRH expression was also upregulated by KP10 and GnRH stimulation in these cells. KP10 and estradiol (E2) both increased Kiss-1 gene expression in mHypoA-50 AVPV cells, but combined stimulation with KP10 and E2 did not potentiate their individual effects on Kiss-1 gene expression. On the other hand, E2 did not increase Kiss-1 gene expression in mHypoA-55 ARC cells, and the KP10-induced increase of Kiss-1 gene expression was inhibited in the presence of E2 in these cells. KP10 and GnRH significantly increased c-Fos protein expression in the mHypoA-50 AVPV and mHypoA-55 ARC cell lines. In primary cultures of fetal rat neuronal cells, KP10 significantly increased Kiss-1 gene expression, whereas GnRH significantly increased GnRH gene expression. We found that kisspeptin and GnRH affected Kiss-1- and GnRH-expressing hypothalamic cells and modulated Kiss-1 and/or GnRH gene expression with a concomitant increase in c-Fos protein expression. A mutual- or self-regulatory system might be present in Kiss-1 and/or GnRH neurons in the hypothalamus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

ARC:

arcuate nucleus

AVPV:

anteroventral periventricular nucleus

GnRH:

gonadotropin-releasing hormone

GnRHR:

gonadotropin-releasing hormone receptor

Kiss1R:

kisspeptin receptor

KNDy:

kisspeptin-neurokinin B-dynorphin A

KP10:

kisspeptin-10

References

  1. de Roux N, Genin E, Carel JC, Matsuda F, Chaussain JL, Milgrom E. Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc Natl Acad Sci U S A. 2003;100:10972–6.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Seminara SB, Messager S, Chatzidaki EE, Thresher RR, Acierno JS Jr, Shagoury JK, et al. The GPR54 gene as a regulator of puberty. N Engl J Med. 2003;349:1614–27.

    Article  CAS  PubMed  Google Scholar 

  3. Gottsch ML, Cunningham MJ, Smith JT, Popa SM, Acohido BV, Crowley WF, et al. A role for kisspeptins in the regulation of gonadotropin secretion in the mouse. Endocrinology. 2004;145:4073–7.

    Article  CAS  PubMed  Google Scholar 

  4. Shahab M, Mastronardi C, Seminara SB, Crowley WF, Ojeda SR, Plant TM. Increased hypothalamic GPR54 signaling: a potential mechanism for initiation of puberty in primates. Proc Natl Acad Sci U S A. 2005;102:2129–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Irwig MS, Fraley GS, Smith JT, Acohido BV, Popa SM, Cunningham MJ, et al. Kisspeptin activation of gonadotropin releasing hormone neurons and regulation of KiSS-1 mRNA in the male rat. Neuroendocrinology. 2004;80:264–72.

    Article  CAS  PubMed  Google Scholar 

  6. Herbison AE, Theodosis DT. Immunocytochemical identification of oestrogen receptors in preoptic neurones containing calcitonin gene-related peptide in the male and female rat. Neuroendocrinology. 1992;56:761–4.

    Article  CAS  PubMed  Google Scholar 

  7. Clarkson J. d’Anglemont de Tassigny X, Colledge WH, Caraty A, Herbison AE: Distribution of kisspeptin neurones in the adult female mouse brain. J Neuroendocrinol. 2009;21:673–82.

    Article  CAS  PubMed  Google Scholar 

  8. Smith JT, Cunningham MJ, Rissman EF, Clifton DK, Steiner RA. Regulation of Kiss1 gene expression in the brain of the female mouse. Endocrinology. 2005;146:3686–92.

    Article  CAS  PubMed  Google Scholar 

  9. Smith JT, Popa SM, Clifton DK, Hoffman GE, Steiner RA. Kiss1 neurons in the forebrain as central processors for generating the preovulatory luteinizing hormone surge. J Neurosci. 2006;26:6687–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Clarkson J, d’Anglemont de Tassigny X, Moreno AS, Colledge WH, Herbison AE. Kisspeptin-GPR54 signaling is essential for preovulatory gonadotropin-releasing hormone neuron activation and the luteinizing hormone surge. J Neurosci. 2008;28:8691–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Clarkson J, Herbison AE. Postnatal development of kisspeptin neurons in mouse hypothalamus; sexual dimorphism and projections to gonadotropin-releasing hormone neurons. Endocrinology. 2006;147:5817–25.

    Article  CAS  PubMed  Google Scholar 

  12. Yeo SH, Herbison AE. Projections of arcuate nucleus and rostral periventricular kisspeptin neurons in the adult female mouse brain. Endocrinology. 2011;152:2387–99.

    Article  CAS  PubMed  Google Scholar 

  13. Ciofi P, Leroy D, Tramu G. Sexual dimorphism in the organization of the rat hypothalamic infundibular area. Neuroscience. 2006;141:1731–45.

    Article  CAS  PubMed  Google Scholar 

  14. Treen AK, Luo V, Chalmers JA, Dalvi PS, Tran D, Ye W, et al. Divergent regulation of ER and kiss genes by 17beta-estradiol in hypothalamic ARC versus AVPV models. Mol Endocrinol. 2016;30:217–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Herbison AE, de Tassigny X, Doran J, Colledge WH. Distribution and postnatal development of Gpr54 gene expression in mouse brain and gonadotropin-releasing hormone neurons. Endocrinology. 2010;151:312–21.

    Article  CAS  PubMed  Google Scholar 

  16. Glanowska KM, Venton BJ, Moenter SM. Fast scan cyclic voltammetry as a novel method for detection of real-time gonadotropin-releasing hormone release in mouse brain slices. J Neurosci. 2012;32:14664–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pielecka-Fortuna J, Chu Z, Moenter SM. Kisspeptin acts directly and indirectly to increase gonadotropin-releasing hormone neuron activity and its effects are modulated by estradiol. Endocrinology. 2008;149:1979–86.

    Article  CAS  PubMed  Google Scholar 

  18. Roseweir AK, Kauffman AS, Smith JT, Guerriero KA, Morgan K, Pielecka-Fortuna J, et al. Discovery of potent kisspeptin antagonists delineate physiological mechanisms of gonadotropin regulation. J Neurosci. 2009;29:3920–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kirilov M, Clarkson J, Liu X, Roa J, Campos P, Porteous R, et al. Dependence of fertility on kisspeptin-Gpr54 signaling at the GnRH neuron. Nat Commun. 2013;4:2492.

    Article  PubMed  Google Scholar 

  20. Wong ML, Medrano JF. Real-time PCR for mRNA quantitation. Biotechniques. 2005;39:75–85.

    Article  CAS  PubMed  Google Scholar 

  21. Bustin SA, Benes V, Nolan T, Pfaffl MW. Quantitative real-time RT-PCR--a perspective. J Mol Endocrinol. 2005;34:597–601.

    Article  CAS  PubMed  Google Scholar 

  22. Bullitt E. Expression of c-fos-like protein as a marker for neuronal activity following noxious stimulation in the rat. J Comp Neurol. 1990;296:517–30.

    Article  CAS  PubMed  Google Scholar 

  23. Gingerich S, Wang X, Lee PK, Dhillon SS, Chalmers JA, Koletar MM, et al. The generation of an array of clonal, immortalized cell models from the rat hypothalamus: analysis of melatonin effects on kisspeptin and gonadotropin-inhibitory hormone neurons. Neuroscience. 2009;162:1134–40.

    Article  CAS  PubMed  Google Scholar 

  24. Mayer CM, Fick LJ, Gingerich S, Belsham DD. Hypothalamic cell lines to investigate neuroendocrine control mechanisms. Front Neuroendocrinol. 2009;30:405–23.

    Article  CAS  PubMed  Google Scholar 

  25. Everitt BJ, Hokfelt T. Neuroendocrine anatomy of the hypothalamus. Acta Neurochir Suppl (Wien). 1990;47:1–15.

    CAS  Google Scholar 

  26. Goodman RL, Lehman MN, Smith JT, Coolen LM, de Oliveira CV, Jafarzadehshirazi MR, et al. Kisspeptin neurons in the arcuate nucleus of the ewe express both dynorphin A and neurokinin B. Endocrinology. 2007;148:5752–60.

    Article  CAS  PubMed  Google Scholar 

  27. Rance NE. Menopause and the human hypothalamus: evidence for the role of kisspeptin/neurokinin B neurons in the regulation of estrogen negative feedback. Peptides. 2009;30:111–22.

    Article  CAS  PubMed  Google Scholar 

  28. Lehman MN, Hileman SM, Goodman RL. Neuroanatomy of the kisspeptin signaling system in mammals: comparative and developmental aspects. Adv Exp Med Biol. 2013;784:27–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Semaan SJ, Kauffman AS. Sexual differentiation and development of forebrain reproductive circuits. Curr Opin Neurobiol. 2010;20:424–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Aggarwal S, Tang C, Sing K, Kim HW, Millar RP, Tello JA. Medial amygdala Kiss1 neurons mediate female pheromone stimulation of luteinizing hormone in male mice. Neuroendocrinology. 2019;108:172–89.

    Article  CAS  PubMed  Google Scholar 

  31. Ciechanowska MO, Lapot M, Kowalczyk M, Malewski T, Brytan M, Antkowiak B, et al. Does kisspeptin participate in GABA-mediated modulation of GnRH and GnRH receptor biosynthesis in the hypothalamic-pituitary unit of follicular-phase ewes? Pharmacol Rep. 2019;71:636–43.

    Article  CAS  PubMed  Google Scholar 

  32. Higo S, Honda S, Iijima N, Ozawa H: Mapping of kisspeptin receptor mRNA in the whole rat brain and its co-localisation with oxytocin in the paraventricular nucleus. J Neuroendocrinol 2016, 28.

  33. Higo S, Iijima N, Ozawa H: Characterisation of Kiss1r (Gpr54)-Expressing neurones in the arcuate nucleus of the female rat hypothalamus. J Neuroendocrinol 2017, 29.

  34. Medger K, Bennett NC, Chimimba CT, Oosthuizen MK, Mikkelsen JD, Coen CW. Analysis of gonadotrophin-releasing hormone-1 and kisspeptin neuronal systems in the nonphotoregulated seasonally breeding eastern rock elephant-shrew (Elephantulus myurus). J Comp Neurol. 2018;526:2388–405.

    Article  CAS  PubMed  Google Scholar 

  35. Neill JD, Duck LW, Sellers JC, Musgrove LC. A gonadotropin-releasing hormone (GnRH) receptor specific for GnRH II in primates. Biochem Biophys Res Commun. 2001;282:1012–8.

    Article  CAS  PubMed  Google Scholar 

  36. Kakar SS, Jennes L. Expression of gonadotropin-releasing hormone and gonadotropin-releasing hormone receptor mRNAs in various non-reproductive human tissues. Cancer Lett. 1995;98:57–62.

    Article  CAS  PubMed  Google Scholar 

  37. Tumurbaatar T, Kanasaki H, Oride A, Okada H, Hara T, Tumurgan Z, et al. Effect of pituitary adenylate cyclase-activating polypeptide (PACAP) in the regulation of hypothalamic kisspeptin expression. Gen Comp Endocrinol. 2019;270:60–6.

    Article  CAS  PubMed  Google Scholar 

  38. Kanasaki H, Tumurbaatar T, Oride A, Tumurgan Z, Okada H, Hara T, et al. Role of RFRP-3 in the regulation of kiss-1 gene expression in the AVPV hypothalamic cell model mHypoA-50. Reprod Sci. 2019;26:1249–55.

    Article  CAS  PubMed  Google Scholar 

  39. Tumurgan Z, Kanasaki H, Tumurbaatar T, Oride A, Okada H, Hara T, et al. Role of activin, follistatin, and inhibin in the regulation of Kiss-1 gene expression in hypothalamic cell modelsdagger. Biol Reprod. 2019;101:405–15.

    Article  PubMed  Google Scholar 

  40. Tumurbaatar T, Kanasaki H, Oride A, Hara T, Okada H, Tsutsui K, et al. Action of neurotensin, corticotropin-releasing hormone, and RFamide-related peptide-3 in E2-induced negative feedback control: studies using a mouse arcuate nucleus hypothalamic cell model. Biol Reprod. 2018;99:1216–26.

    Article  PubMed  Google Scholar 

  41. Mellon PL, Windle JJ, Goldsmith PC, Padula CA, Roberts JL, Weiner RI. Immortalization of hypothalamic GnRH neurons by genetically targeted tumorigenesis. Neuron. 1990;5:1–10.

    Article  CAS  PubMed  Google Scholar 

  42. Quaynor S, Hu L, Leung PK, Feng H, Mores N, Krsmanovic LZ, et al. Expression of a functional g protein-coupled receptor 54-kisspeptin autoregulatory system in hypothalamic gonadotropin-releasing hormone neurons. Mol Endocrinol. 2007;21:3062–70.

    Article  CAS  PubMed  Google Scholar 

  43. Sukhbaatar U, Kanasaki H, Mijiddorj T, Oride A, Miyazaki K. Kisspeptin induces expression of gonadotropin-releasing hormone receptor in GnRH-producing GT1-7 cells overexpressing G protein-coupled receptor 54. Gen Comp Endocrinol. 2013;194:94–101.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture of Japan (to HK and AO).

Author information

Authors and Affiliations

Authors

Contributions

HK and SA conceived and designed the experiments. HK, TT, ZT, AO, and HO performed the experiments. HK wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Haruhiko Kanasaki.

Ethics declarations

Ethics Approval and Consent to Participate

The study protocol was approved by the committee of the Experimental Animal Center for Integrated Research, Shimane University. Consent to participate is not applicable in this study.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanasaki, H., Tumurbaatar, T., Tumurgan, Z. et al. Mutual Interactions Between GnRH and Kisspeptin in GnRH- and Kiss-1-Expressing Immortalized Hypothalamic Cell Models. Reprod. Sci. 28, 3380–3389 (2021). https://doi.org/10.1007/s43032-021-00695-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-021-00695-z

Keywords

Navigation