Skip to main content
Log in

Mifepristone is a Vasodilator Due to the Inhibition of Smooth Muscle Cells L-Type Ca2+ Channels

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Derived from the estrane progestins, mifepristone was the first synthetic steroid of this class employed as abortifacient in the first months of pregnancy. Mifepristone reduces high potassium-induced contraction and prevents calcium-induced contraction. At the vascular level, mifepristone induces direct relaxation in rat and human arteries, and this effect seems to be endothelium- and NO independent, suggesting that the vascular smooth muscle is its target. Moreover, mifepristone’s effect could involve the modulation of different calcium channels. The aim of the present study is to analyze the involvement of calcium channels in the relaxation induced by mifepristone on vascular smooth muscle cells (VSMCs). Planar cell surface area (PCSA) technique was used to analyze the effect of mifepristone on the VSMC contractility, and the whole cell configuration of patch-clamp technique to measure the activity of L-type Ca2+ channels (LTCC) in A7r5 cells. Regarding the PCSA technique, mifepristone induced relaxation of the VSMC previously contracted by different agents. Also, a rapid inhibitory effect on basal and BAY K8644-stimulated calcium current was observed, which indicates that this drug has the ability to block LTCC. These results suggest that mifepristone induces relaxation on the VSMCs due to the inhibition of the calcium channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gagne D, Pons M, Philibert D. RU 38486: a potent antiglucocorticoid in vitro and in vivo. J Steroid Biochem. 1985;23(3): 247–251.

    CAS  PubMed  Google Scholar 

  2. Spitz IM, Robbins A. Mechanism of action and clinical effects of antiprogestins on the non-pregnant uterus. Hum Reprod Update. 1998;4(5):584–593.

    CAS  PubMed  Google Scholar 

  3. Schaff EA. Mifepristone: ten years later. Contraception. 2010; 81(1):1–7.

    CAS  PubMed  Google Scholar 

  4. Perusquia M, Espinoza J, Navarrete E. Nongenomic uterine relaxing effect of RU 486 (mifepristone) prior to its antiprogesterone activity in the human pregnancy. Steroids. 2009;74(10–11): 825–831.

    CAS  PubMed  Google Scholar 

  5. Bygdeman M, Swahn ML. Termination of early pregnancy with antiprogestin and prostaglandin. Lakartidningen. 1988;85(47): 4040–4041.

    CAS  PubMed  Google Scholar 

  6. Sitruk-Ware R. Mifepristone and misoprostol sequential regimen side effects, complications and safety. Contraception. 2006;74(1): 48–55.

    CAS  PubMed  Google Scholar 

  7. Perusquia M, Espinoza J, de la Pena A. Mifepristone (RU 486) induces vasodilation and inhibits platelet aggregation: nongenomic and genomic action to cause hemorrhage. Contraception. 2011;84(2):169–177.

    CAS  PubMed  Google Scholar 

  8. Sitruk-Ware R, Spitz IM. Pharmacological properties of mifepristone: toxicology and safety in animal and human studies. Contraception. 2003;68(6):409–420.

    CAS  PubMed  Google Scholar 

  9. Haluska GJ, Stanczyk FZ, Cook MJ, Novy MJ. Temporal changes in uterine activity and prostaglandin response to RU486 in rhesus macaques in late gestation. Am J Obstet Gynecol. 1987;157(6): 1487–1495.

    CAS  PubMed  Google Scholar 

  10. Wolf JP, Sinosich M, Anderson TL, Ulmann A, Baulieu EE, Hodgen GD. Progesterone antagonist (RU 486) for cervical dilation, labor induction, and delivery in monkeys: effectiveness in combination with oxytocin. Am J Obstet Gynecol. 1989;160(1):45–47.

    CAS  PubMed  Google Scholar 

  11. Perusquia M, Kubli-Garfias C. Progesterone-like relaxant effect of RU 486 in the rat myometrium. Life Sci. 1994;54(20): 1501–1506.

    CAS  PubMed  Google Scholar 

  12. Cairrao E, Alvarez E, Carvas JM, Santos-Silva AJ, Verde I. Non-genomic vasorelaxant effects of 17beta-estradiol and progesterone in rat aorta are mediated by L-type Ca2+ current inhibition. Acta Pharmacologica Sinica. 2012;33(5):615–624.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. van Borren MM, Verkerk AO, Vanharanta SK, Baartscheer A, Coronel R, Ravesloot JH. Reduced swelling-activated Cl(-) current densities in hypertrophied ventricular myocytes of rabbits with heart failure. Cardiovasc Res. 2002;53(4):869–878.

    PubMed  Google Scholar 

  14. Peiro C, Angulo J, Rodriguez-Manas L, et al. Vascular smooth muscle cell hypertrophy induced by glycosylated human oxyhaemoglobin. Br J Pharmacol. 1998;125(4):637–644.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981;391(2):85–100.

    CAS  PubMed  Google Scholar 

  16. Cairrao E, Alvarez E, Santos-Silva AJ, Verde I. Potassium channels are involved in testosterone-induced vasorelaxation of human umbilical artery. Naunyn Schmiedebergs Arch Pharmacol. 2008;376(5):375–383.

    CAS  PubMed  Google Scholar 

  17. Edwards DP. Regulation of signal transduction pathways by estrogen and progesterone. Annu Rev Physiol. 2005;67: 335–376.

    CAS  PubMed  Google Scholar 

  18. Feiteiro J, Santos-Silva AJ, Verde I, Cairrao E. Testosterone and atrial natriuretic Peptide share the same pathway to induce vasorelaxation of human umbilical artery. J Cardiovasc Pharmacol. 2014;63(5):461–465.

    CAS  PubMed  Google Scholar 

  19. Gutierrez M, Martinez V, Cantabrana B, Hidalgo A. Genomic and non-genomic effects of steroidal drugs on smooth muscle contraction in vitro. Life Sci. 1994;55(6):437–443.

    CAS  PubMed  Google Scholar 

  20. Perusquia M, Garcia-Yanez E, Ibanez R, Kubli-Garfias C. Non-genomic mechanism of action of delta-4 and 5-reduced androgens and progestins on the contractility of the isolated rat myometrium. Life Sci. 1990;47(17):1547–1553.

    CAS  PubMed  Google Scholar 

  21. Sanchez Aparicio JA, Gutierrez M, Hidalgo A, Cantabrana B. Effects of androgens on isolated rat uterus. Life Sci. 1993;53(3): 269–274.

    CAS  PubMed  Google Scholar 

  22. Scragg JL, Dallas ML, Peers C. Molecular requirements for L-type Ca2+ channel blockade by testosterone. Cell Calcium. 2007;42(1):11–15.

    CAS  PubMed  Google Scholar 

  23. Fernandez AI, Martinez V, Cantabrana B, Hidalgo A. Differential effect of calcium and Bay K 8644 on the inhibitory action of estrogens in the rat uterus. Gen Pharmacol. 1992;23(3):549–554.

    CAS  PubMed  Google Scholar 

  24. Goyache FM, Gutierrez M, Hidalgo A, Cantabrana B. Non-genomic effects of catecholestrogens in the in vitro rat uterine contraction. Gen Pharmacol. 1995;26(1):219–223.

    CAS  PubMed  Google Scholar 

  25. Salas E, Lopez MG, Villarroya M, et al. Endothelium-independent relaxation by 17-alpha-estradiol of pig coronary arteries. Eur J Pharmacol. 1994;258(1–2):47–55.

    CAS  PubMed  Google Scholar 

  26. McEwen BS. Non-genomic and genomic effects of steroids on neural activity. Trends Pharmacol Sci. 1991;12(4):141–147.

    CAS  PubMed  Google Scholar 

  27. Moss RL, Dudley CA. Molecular aspects of the interaction between estrogen and the membrane excitability of hypothalamic nerve cells. Prog Brain Res. 1984;61:3–22.

    CAS  PubMed  Google Scholar 

  28. Parra J, Cantabrana B, Hidalgo A. Mechanism of mifepristone-induced spasmolytic effect on isolated rat uterus. Life Sci. 2000; 66(26):2563–2569.

    CAS  PubMed  Google Scholar 

  29. Schumacher M. Rapid membrane effects of steroid hormones: an emerging concept in neuroendocrinology. Trends Neurosci. 1990; 13(9):359–362.

    CAS  PubMed  Google Scholar 

  30. Santos-Silva AJ, Cairrao E, Marques B, Verde I. Regulation of human umbilical artery contractility by different serotonin and histamine receptors. Reprod Sci. 2009;16(12):1175–1185.

    CAS  PubMed  Google Scholar 

  31. Kaumann AJ, Levy FO. 5-hydroxytryptamine receptors in the human cardiovascular system. Pharmacol Ther. 2006;111(3): 674–706.

    CAS  PubMed  Google Scholar 

  32. Guimaraes S, Moura D. Vascular adrenoceptors: an update. Pharmacol Rev. 2001;53(2):319–356.

    CAS  PubMed  Google Scholar 

  33. Wang Y, Hou R, Li P, et al. Gene expression profiles in response to the activation of adrenoceptors in A7r5 aortic smooth muscle cells. Clin Exp Pharmacol Physiol. 2004;31(9):602–607.

    CAS  PubMed  Google Scholar 

  34. Traupe T, Stettler CD, Li H, et al. Distinct roles of estrogen receptors alpha and beta mediating acute vasodilation of epicardial coronary arteries. Hypertension. 2007;49(6):1364–1370.

    CAS  PubMed  Google Scholar 

  35. Weihua Z, Saji S, Makinen S, et al. Estrogen receptor (ER) beta, a modulator of ERalpha in the uterus. Proc Natl Acad Sci USA. 2000;97(11):5936–5941.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Perusquia M, Hernandez R, Morales MA, Campos MG, Villalon CM. Role of endothelium in the vasodilating effect of progestins and androgens on the rat thoracic aorta. Gen Pharmacol. 1996; 27(1):181–185.

    CAS  PubMed  Google Scholar 

  37. Stull JT, Gallagher PJ, Herring BP, Kamm KE. Vascular smooth muscle contractile elements. Cellular regulation. Hypertension. 1991;17(16 pt 1):723–732.

    CAS  PubMed  Google Scholar 

  38. Cairrao E, Carvas J, Santos-Silva AJ, Alvarez E, Verde I. 17beta-Estradiol and progesterone inhibit L-type Ca2+ current of rat aorta smooth muscle cells. Portugaliae Electrochimica Acta. 2006;24(2):241–255.

    CAS  Google Scholar 

  39. Zhang F, Ram JL, Standley PR, Sowers JR. 17 beta-Estradiol attenuates voltage-dependent Ca2+ currents in A7r5 vascular smooth muscle cell line. Am J Physiol. 1994;266(4 pt 1): c975–c980.

    CAS  PubMed  Google Scholar 

  40. Zhang M, Benishin CG, Pang PK. Rapid inhibition of the contraction of rat tail artery by progesterone is mediated by inhibition of calcium currents. J Pharm Pharmacol. 2002;54(12):1667–1674.

    CAS  PubMed  Google Scholar 

  41. Nakajima T, Kitazawa T, Hamada E, Hazama H, Omata M, Kurachi Y. 17beta-Estradiol inhibits the voltage-dependent L-type Ca2+ currents in aortic smooth muscle cells. Eur J Pharmacol. 1995;294(2–3):625–635.

    CAS  PubMed  Google Scholar 

  42. Cairrão E, Santos-Silva AJ, Verde I. PKG is involved in testosterone-induced vasorelaxation of human umbilical artery. Eur J Pharmacol. 2010;640(1–3):94–101.

    PubMed  Google Scholar 

  43. Montano LM, Calixto E, Figueroa A, Flores-Soto E, Carbajal V, Perusquia M. Relaxation of androgens on rat thoracic aorta: testosterone concentration dependent agonist/antagonist L-type Ca2+ channel activity, and 5{beta}-dihydrotestosterone restricted to L-type Ca2+ channel antagonism. Endocrinology. 2008; 149(5): 2517–2526.

    CAS  PubMed  Google Scholar 

  44. Deenadayalu V, Puttabyatappa Y, Liu AT, Stallone JN, White RE. Testosterone-induced relaxation of coronary arteries: activation of BKCa channels via the cGMP-dependent protein kinase. Am J Physiol Heart Circ Physiol. 2012;302(1):h115–h123. 45. Keung W, Vanhoutte PM, Man RY. Acute impairment of contractile responses by 17beta-estradiol is cAMP and protein kinase G dependent in vascular smooth muscle cells of the porcine coronary arteries. Br J Pharmacol. 2005;144(1):71–79.

    CAS  PubMed  Google Scholar 

  45. Mugge A, Riedel M, Barton M, Kuhn M, Lichtlen PR. Endothelium independent relaxation of human coronary arteries by 17 beta-oestradiol in vitro. Cardiovasc Res. 1993;27(11): 1939–1942.

    CAS  PubMed  Google Scholar 

  46. Perusquia M. Nongenomic action of steroids in myometrial contractility. Endocrine. 2001;15(1):63–72.

    CAS  PubMed  Google Scholar 

  47. Perusquia M. Nongenomic action of steroids in myometrial contractility. Endocrine. 2001;15(1):63–72.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Cairrao PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mariana, M., Feiteiro, J., Cairrao, E. et al. Mifepristone is a Vasodilator Due to the Inhibition of Smooth Muscle Cells L-Type Ca2+ Channels. Reprod. Sci. 23, 723–730 (2016). https://doi.org/10.1177/1933719115612926

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719115612926

Keywords

Navigation