Skip to main content
Log in

Pharmacological evidence that potentiation of plasmalemmal Ca2+-extrusion is functionally coupled to inhibition of SR Ca2+-ATPases in vascular smooth muscle cells

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Cyclopiazonic acid (CPA), a specific inhibitor of sarcoplasmic reticulum (SR) Ca2+-ATPases, causes slowly developing and subsequently diminishing characteristic contractions in vascular smooth muscle, and the second application of CPA has incompletely repeatable effects, depending on the vessel type. The objective of the present study was to examine the mechanisms underlying the significant decrease of CPA-induced contractions upon the second application. A pharmacological intervention of Ca2+ extrusion process as a strategy was performed to modulate vasoconstrictor effects of CPA in rat aortic ring preparations. CPA-induced contractions, expressed as percentages of the contractions induced by KCl (80 mM), were significantly decreased from 44.1 ± 5.7 to 7.6 ± 1.8 % (P < 0.001) upon the second application. The contractions, however, were completely repeatable in the presence of vanadate, an inhibitor of ATPases, but not of ouabain, an inhibitor of Na+-pumps. Strikingly, CPA-induced contractions were sustained and completely repeatable in Na+-free and low Na+ medium. Furthermore, we found that the contractions were completely repeatable in the presence of 2′,4′-dichlorobenzamil, an inhibitor of the forward mode of Na+/Ca2+ exchangers, but not of KBR7943, an inhibitor of the reverse mode of Na+/Ca2+ exchangers. Our findings indicate that CPA by inducing a transient rise in cytosolic Ca2+ level causes a long-lasting upregulation of plasma membrane (PM) Ca2+ extruders and thus leads to a diminished contraction upon its second application in blood vessels. This suggests that there is a functional coupling between PM Ca2+ extruders and SR Ca2+-ATPases in rat aortic smooth muscle cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Blaustein MP, Zhang J, Chen L, Hamilton BP (2006) How does salt retention raise blood pressure? Am J Physiol Regul Integr Comp Physiol 290:R514–R523. doi:10.1152/ajpregu.00819.2005

    Article  CAS  PubMed  Google Scholar 

  • Carafoli E, Stauffer T (1994) The plasma membrane calcium pump: functional domains, regulation of the activity, and tissue specificity of isoform expression. J Neurobiol 25:312–324

    Article  CAS  PubMed  Google Scholar 

  • Caride AJ, Penheiter AR, Filoteo AG, Bajzer Z, Enyedi Á, Penniston JT (2001) The plasma membrane calcium pump displays memory of past calcium spikes. J Biol Chem 276:39797–39804. doi:10.1074/jbc.M104380200

    Article  CAS  PubMed  Google Scholar 

  • Daniel EE, El-Yazbi A, Cho WJ (2006) Caveolae and calcium handling, a review and a hypothesis. J Cell Mol Med 10:529–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniel EE, van Breemen C, Schilling WP, Kwan CY (1995) Regulation of vascular tone: cross-talk between sarcoplasmic reticulum and plasmalemma. Can J Physiol Pharmacol 73:551–557

    Article  CAS  PubMed  Google Scholar 

  • Davis K, Samson S, Hammel K, Kiss L, Fulop F, Grover AK (2009) Functional linkage of Na+-Ca2+-exchanger to sarco/endoplasmic reticulum Ca2+ pump in coronary artery: comparison of smooth muscle and endothelial cells. J Cell Mol Med 13(8B):1775–1783. doi:10.1111/j.1582-4934.2008.00480.x

    Article  PubMed  Google Scholar 

  • Deng HW, Kwan CY (1991) Cyclopiazonic acid is a sarcoplasmic reticulum Ca2+-pump inhibitor of rat aortic muscle. zhong guo yao li xue bao 12:53–58

  • Dipolo R, Beauge L (2006) Sodium/calcium exchanger: influence of metabolic regulation on ion carrier interactions. Physiol Rev 86:155–203. doi:10.1152/physrev.00018.2005

    Article  CAS  PubMed  Google Scholar 

  • Domi T, Leva FD, Fedrizzi L, Rimessi A, Brini M (2007) Functional specificity of PMCA isoforms? Ann N Y Acad Sci 1099:237–246. doi:10.1196/annals.1387.043

    Article  CAS  PubMed  Google Scholar 

  • Fameli N, van Breemen C, Kuo KH (2007) A quantitative model for linking Na+/Ca2+ exchanger to SERCA during refilling of the sarcoplasmic reticulum to sustain Ca2+ oscillations in vascular smooth muscle. Cell Calcium 42:565–575

    Article  CAS  PubMed  Google Scholar 

  • Floyd R, Wray S (2007) Calcium transporters and signalling in smooth muscles. Cell Calcium 42:467–476

    Article  CAS  PubMed  Google Scholar 

  • Fukao M, Hattori Y, Kanno M, Sakuma I, Kitabatake A (1995) Thapsigargin- and cyclopiazonic acid-induced endothelium-dependent hyperpolarization in rat mesenteric artery. Br J Pharmacol 115:987–992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gherghiceanu M, Popescu LM (2007) Electron microscope tomography: further demonstration of nanocontacts between caveolae and smooth muscle sarcoplasmic reticulum. J Cell Mol Med 11:1416–1418. doi:10.1111/j.1582-4934.2007.00166.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Goeger DE, Riley RT, Dorner JW, Cole RJ (1988) Cyclopiazonic acid inhibition of the Ca2+ transport ATPase in rat skeletal muscle sarcoplasmic reticulum vesicles. Biochem Pharmacol 37:978–981

    Article  CAS  PubMed  Google Scholar 

  • Grover AK, Jones TR, Daniel EE (1980) Effect of vanadate on rat myometrium plasma membrane enzyme activities. Can J Physiol Pharmacol 58:1247–1250

    Article  CAS  PubMed  Google Scholar 

  • Guerini D, Coletto L, Carafoli E (2005) Exporting calcium from cells. Cell Calcium 38:281–289

    Article  CAS  PubMed  Google Scholar 

  • Holzapfel CW (1968) The isolation and structure of cyclopiazonic acid, a toxic metabolite of Penicillium cyclopium westling. Tetrahedron 24:2101–2119

    Article  CAS  PubMed  Google Scholar 

  • Hryshko LV (2002) Tissue-specific modes of Na/Ca exchanger regulation. Ann N Y Acad Sci 976:166–175

    Article  CAS  PubMed  Google Scholar 

  • Inesi G, Sagara Y (1994) Specific inhibitors of intracellular Ca2+ transport ATPases. J Membr Biol 141:1–6

    Article  CAS  PubMed  Google Scholar 

  • Iwamoto T, Watano T, Shigekawa M (1996) A novel isothiourea derivative selectively inhibits the reverse mode of Na+/Ca2+ exchange in cells expressing NCX1. J Biol Chem 271:22391–22397. doi:10.1074/jbc.271.37.22391

    Article  CAS  PubMed  Google Scholar 

  • Kim MY, Seol GH, Liang GH, Kim JA, Suh SH (2005) Na+-K+ pump activation inhibits endothelium-dependent relaxation by activating the forward mode of Na+/Ca2+ exchanger in mouse aorta. Am J Physiol Heart Circ Physiol 289:H2020–H2029. doi:10.1152/ajpheart.00908.2004

    Article  CAS  PubMed  Google Scholar 

  • Low AM, Kotecha N, Neild TO, Kwan CY, Daniel EE (1996) Relative contributions of extracellular Ca2+ and Ca2+ stores to smooth muscle contraction in arteries and arterioles of rat, guinea-pig dog and rabbit. Clin Exp Pharmacol Physiol 23:310–316. doi:10.1111/j.1440-1681.1996.tb02829.x

    Article  CAS  PubMed  Google Scholar 

  • Maggi CA, Giuliani S, Santicioli P (1995) Effect of the Ca2+-ATPase inhibitor, cyclopiazonic acid, on electromechanical coupling in the guinea-pig ureter. Br J Pharmacol 114:127–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moldes-Anaya A, Asp T, Eriksen G, Skaar I, Rundberget T (2009) Determination of cyclopiazonic acid in food and feeds by liquid chromatography-tandem mass spectrometry. J Chromatogr A 1216:3812–3818. doi:10.1080/01480540802416232

    Article  CAS  PubMed  Google Scholar 

  • Moncoq K, Trieber CA, Young HS (2007) The molecular basis for cyclopiazonic acid inhibition of the sarcoplasmic reticulum calcium pump. J Biol Chem 282:9748–9757. doi:10.1074/jbc.M611653200

    Article  CAS  PubMed  Google Scholar 

  • Munro DD, Wendt IR (1994) Effects of cyclopiazonic acid on [Ca2+]i and contraction in rat urinary bladder smooth muscle. Cell Calcium 15:369–380

    Article  CAS  PubMed  Google Scholar 

  • Nakasaki Y, Iwamoto T, Hanada H, Imagawa T, Shigekawa M (1993) Cloning of the rat aortic smooth muscle Na+/Ca2+ exchanger and tissue-specific expression of isoforms. J Biochem (Tokyo) 114:528–534

    CAS  Google Scholar 

  • Nazer MA, van Breemen C (1998) Functional linkage of Na+-Ca2+ exchange and sarcoplasmic reticulum Ca2+ release mediates Ca2+ cycling in vascular smooth muscle. Cell Calcium 24:275–283

    Article  CAS  PubMed  Google Scholar 

  • Pande J, Grover AK (2005) Plasma membrane calcium pumps in smooth muscle: from fictional molecules to novel inhibitors. Can J Physiol Pharmacol 83:743–754

    Article  CAS  PubMed  Google Scholar 

  • Pande J, Mallhi KK, Sawh A, Szewczyk MM, Simpson F, Grover AK (2006) Aortic smooth muscle and endothelial plasma membrane Ca2+ pump isoforms are inhibited differently by the extracellular inhibitor caloxin 1b1. Am J Physiol Cell Physiol 290:C1341–C1349. doi:10.1152/ajpcell.00573.2005

    Article  CAS  PubMed  Google Scholar 

  • Petkov GV, Boev KK (1996) Cyclopiazonic acid-induced changes in contractile activity of smooth muscle strips isolated from cat and guinea-pig stomach. Eur J Pharmacol 318:109–115

    Article  CAS  PubMed  Google Scholar 

  • Poburko D, Liao CH, Lemos V, Lin E, Maruyama Y, Cole W, van Breemen C (2007) Transient receptor potential channel 6-mediated, localized cytosolic Na+ transients drive Na+/Ca2+ exchanger-mediated Ca2+ entry in purinergically stimulated aorta smooth muscle cells. Circ Res 101:1030–1038

    Article  CAS  PubMed  Google Scholar 

  • Popescu LM, Gherghiceanu M, Mandache E, Cretoiu D (2006) Caveolae in smooth muscles: nanocontacts. J Cell Mol Med 10:960–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pottorf WJ, Thayer SA (2002) Transient rise in intracellular calcium produces a long-lasting increase in plasma membrane calcium pump activity in rat sensory neurons. J Neurochem 83:1002–1008. doi:10.1046/j.1471-4159.2002.01221.x

    Article  CAS  PubMed  Google Scholar 

  • Quednau BD, Nicoll DA, Philipson KD (1997) Tissue specificity and alternative splicing of the Na+/Ca2+ exchanger isoforms NCX1, NCX2, and NCX3 in rat. Am J Physiol Cell Physiol 272:C1250–C1261

    CAS  Google Scholar 

  • Quednau BD, Nicoll DA, Philipson KD (2004) The sodium/calcium exchanger family—SLC8. Pflugers Arch 447:543–548

    Article  CAS  PubMed  Google Scholar 

  • Rubanyi GM, Vanhoutte PM (1988) Calcium and activation of the release of endothelium-derived relaxing factor. Ann N Y Acad Sci 522:226–233. doi:10.1111/j.1749-6632.1988.tb33360.x

    Article  CAS  PubMed  Google Scholar 

  • Saris NEL, Carafoli E (2005) A historical review of cellular calcium handling, with emphasis on mitochondria. Biochemistry (00062979) 70:187–194

  • Sedova M, Blatter LA (1999) Dynamic regulation of [Ca2+]i by plasma membrane Ca2+-ATPase and Na+/Ca2+exchange during capacitative Ca2+ entry in bovine vascular endothelial cells. Cell Calcium 25:333–343

    Article  CAS  PubMed  Google Scholar 

  • Seidler NW, Jona I, Vegh M, Martonosi A (1989) Cyclopiazonic acid is a specific inhibitor of the Ca2+-ATPase of sarcoplasmic reticulum. J Biol Chem 264:17816–17823

    CAS  PubMed  Google Scholar 

  • Suzuki H, Kito Y, Fukuta H, Yamamoto Y (2002) Dual effects of cyclopiazonic acid on excitation of circular smooth muscle isolated from the guinea-pig gastric antrum. J Smooth Muscle Res 38:23–37

    Article  CAS  PubMed  Google Scholar 

  • Szewczyk MM, Davis KA, Samson SE, Simpson F, Rangachari PK, Grover AK (2007) Ca2+-pumps and Na+-Ca2+-exchangers in coronary artery endothelium versus smooth muscle. J Cell Mol Med 11:129–138. doi:10.1111/j.1582-4934.2007.00010.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Dong H, Rubin LJ, Yuan JX (2007) Upregulation of Na+/Ca2+ exchanger contributes to the enhanced Ca2+ entry in pulmonary artery smooth muscle cells from patients with idiopathic pulmonary arterial hypertension. Am J Physiol Cell Physiol 292:C2297–C2305. doi:10.1152/ajpcell.00383.2006

    Article  CAS  PubMed  Google Scholar 

  • Zhang WB, Chen CX, Sim SM, Kwan CY (2004) In vitro vasodilator mechanisms of the indole alkaloids rhynchophylline and isorhynchophylline, isolated from the hook of Uncaria rhynchophylla (miquel). Naunyn-Schmiedebergs Arch Pharmacol 369:232–238

    Article  CAS  PubMed  Google Scholar 

  • Zhang WB, Kwan CY (2009) Unrepeatable extracellular Ca2+-dependent contractile effects of cyclopiazonic acid in rat vascular smooth muscle. Eur J Pharmacol 610:81–86. doi:10.1016/j.ejphar.2009.03.030

    Article  CAS  PubMed  Google Scholar 

  • Zheng XF, Guan YY, Kwan CY (1993) Cyclopiazonic acid causes endothelium-dependent relaxation in rat aorta. zhong guo yao li xue bao 14:21–26

Download references

Acknowledgments

This work was supported by a seeding grant awarded by the Faculty of Health Sciences, McMaster University, Hamilton, Canada, and a start-up grant from the China Medical University, Taichung, Taiwan. We thank Dr. Si-Mui Sim and Joanna Miller for their generous help. Comments and suggestions from Dr. A. K. Grover are particularly helpful and constructive during the course of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiu-Yin Kwan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, WB., Kwan, CY. Pharmacological evidence that potentiation of plasmalemmal Ca2+-extrusion is functionally coupled to inhibition of SR Ca2+-ATPases in vascular smooth muscle cells. Naunyn-Schmiedeberg's Arch Pharmacol 389, 447–455 (2016). https://doi.org/10.1007/s00210-016-1209-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-016-1209-7

Keywords

Navigation