Skip to main content

Advertisement

Log in

The Mechanism and Function of Epigenetics in Uterine Leiomyoma Development

  • Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Uterine leiomyomas, also known as uterine fibroids, are the most common pelvic tumors, occurring in nearly 70% of all reproductive-aged women and are the leading indication for hysterectomy worldwide. The development of uterine leiomyomas involve a complex and heterogeneous constellation of hormones, growth factors, stem cells, genetic, and epigenetic abnormalities. An increasing body of evidence emphasizes the important contribution of epigenetics in the pathogenesis of leiomyomas. Genome-wide methylation analysis demonstrates that a subset of estrogen receptor (ER) response genes exhibit abnormal hypermethylation levels that are inversely correlated with their RNA expression. Several tumor suppressor genes, including Kruppel-like factor 11 (KLF11), deleted in lung and esophageal cancer 1 (DLEC1), keratin 19 (KRT19), and death-associated protein kinase 1 (DAPK1) also display higher hypermethylation levels in leiomyomas when compared to adjacent normal tissues. The important role of active DNA demethylation was recently identified with regard to the ten-eleven translocation protein 1 and ten-eleven translocation protein 3-mediated elevated levels of 5-hydroxymethylcytosine in leiomyoma. In addition, both histone deacetylase and histone methyltransferase are reported to be involved in the biology of leiomyomas. A number of deregulated microRNAs have been identified in leiomyomas, leading to an altered expression of their targets. More recently, the existence of side population (SP) cells with characteristics of tumor-initiating cells have been characterized in leiomyomas. These SP cells exhibit a tumorigenic capacity in immunodeficient mice when exposed to 17β-estradiol and progesterone, giving rise to fibroid-like tissue in vivo. These new findings will likely enhance our understanding of the crucial role epigenetics plays in the pathogenesis of uterine leiomyomas as well as point the way to novel therapeutic options.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Hendy A, Salama S. Gene therapy and uterine leiomyoma: a review. Hum Reprod Update. 2006;12(4):385–400.

    Article  CAS  PubMed  Google Scholar 

  2. Bulun SE. Uterine fibroids. N Engl J Med. 2013;369(14): 1344–1355.

    Article  CAS  PubMed  Google Scholar 

  3. Cardozo ER, Clark AD, Banks NK, Henne MB, Stegmann BJ, Segars JH. The estimated annual cost of uterine leiomyomata in the United States. Am J Obstet Gynecol. 2012;206(3):211. e1–e9.

    Article  Google Scholar 

  4. Sabry M, Al-Hendy A. Medical treatment of uterine leiomyoma. Reprod Sci. 2012;19(4):339–353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Segars JH, Parrott EC, Nagel JD, et al. Proceedings from the Third National Institutes of Health International Congress on Advances in Uterine Leiomyoma Research: comprehensive review, conference summary and future recommendations. Hum Reprod Update. 2014;20(3):309–333.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kim GH, Ryan JJ, Marsboom G, Archer SL. Epigenetic mechanisms of pulmonary hypertension. Pulm Circ. 2011;1(3):347–356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jeong M, Sun D, Luo M, et al. Large conserved domains of low DNA methylation maintained by Dnmt3a. Nat Genet. 2014; 46(1):17–23.

    Article  CAS  PubMed  Google Scholar 

  8. Jones PA. DNA methylation and cancer. Oncogene. 2002;21(35): 5358–5360.

    Article  CAS  PubMed  Google Scholar 

  9. Nagasaka T, Goel A, Notohara K, et al. Methylation pattern of the O6-methylguanine-DNA methyltransferase gene in colon during progressive colorectal tumorigenesis. Int J Cancer. 2008;122(11): 2429–2436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kobayashi Y, Absher DM, Gulzar ZG, et al. DNA methylation profiling reveals novel biomarkers and important roles for DNA methyltransferases in prostate cancer. Genome Res. 2011;21(7): 1017–1027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang Q, Liu S, Tian Y, et al. Methylation-associated silencing of the heat shock protein 47 gene in human neuroblastoma. Cancer Res. 2004;64(13):4531–4538.

    Article  CAS  PubMed  Google Scholar 

  12. Yang Q, Kiernan CM, Tian Y, et al. Methylation of CASP8, DCR2, and HIN-1 in neuroblastoma is associated with poor outcome. Clin Cancer Res. 2007;13(11):3191–3197.

    Article  CAS  PubMed  Google Scholar 

  13. Agrawal S, Unterberg M, Koschmieder S, et al. DNA methylation of tumor suppressor genes in clinical remission predicts the relapse risk in acute myeloid leukemia. Cancer Res. 2007; 67(3):1370–1377.

    Article  CAS  PubMed  Google Scholar 

  14. Berg T, Steigen SE. DNA methylation in breast and colorectal cancer. Mod Pathol. 2008;21(8):1063; author reply -4.

    Article  PubMed  Google Scholar 

  15. de Mello VD, Pulkkinen L, Lalli M, Kolehmainen M, Pihlajamaki J, Uusitupa M. DNA methylation in obesity and type 2 diabetes. Ann Med. 2014;46(3):103–113.

    Article  PubMed  CAS  Google Scholar 

  16. Toperoff G, Aran D, Kark JD, et al. Genome-wide survey reveals predisposing diabetes type 2-related DNA methylation variations in human peripheral blood. Hum Mol Genet. 2012;21(2):371–383.

    Article  CAS  PubMed  Google Scholar 

  17. Jamaluddin MS, Yang X, Wang H. Hyperhomocysteinemia, DNA methylation and vascular disease. Clin Chem Lab Med. 2007; 45(12):1660–1666.

    Article  CAS  PubMed  Google Scholar 

  18. Suarez-Alvarez B, Rodriguez RM, Fraga MF, Lopez-Larrea C. DNA methylation: a promising landscape for immune system-related diseases. Trends Genet. 2012;28(10):506–514.

    Article  CAS  PubMed  Google Scholar 

  19. Li Y, Sawalha AH, Lu Q. Aberrant DNA methylation in skin diseases. J Dermatol Sci. 2009;54(3):143–149.

    Article  CAS  PubMed  Google Scholar 

  20. Jones PA. DNA methylation and cancer. Cancer Res. 1986;46(2): 461–466.

    CAS  PubMed  Google Scholar 

  21. Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007; 128(4):683–692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Robertson KD. DNA methylation, methyltransferases, and cancer. Oncogene. 2001;20(24):3139–3155.

    Article  CAS  PubMed  Google Scholar 

  23. Baylin SB, Esteller M, Rountree MR, Bachman KE, Schuebel K, Herman JG. Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum Mol Genet. 2001;10(7):687–692.

    Article  CAS  PubMed  Google Scholar 

  24. Esteller M, Fraga MF, Guo M, et al. DNA methylation patterns in hereditary human cancers mimic sporadic tumorigenesis. Hum Mol Genet. 2001;10(26):3001–3007.

    Article  CAS  PubMed  Google Scholar 

  25. Taberlay PC, Jones PA. DNA methylation and cancer. Prog Drug Res. 2011;67:1–23.

    CAS  PubMed  Google Scholar 

  26. Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis. 2010;31(1):27–36.

    Article  CAS  PubMed  Google Scholar 

  27. Gopalakrishnan S, Van Emburgh BO, Shan J, et al. A novel DNMT3B splice variant expressed in tumor and pluripotent cells modulates genomic DNA methylation patterns and displays altered DNA binding. Mol Cancer Res. 2009;7(10):1622–1634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang J, Bhutani M, Pathak AK, et al. Delta DNMT3B variants regulate DNA methylation in a promoter-specific manner. Cancer Res. 2007;67(22):10647–10652.

    Article  CAS  PubMed  Google Scholar 

  29. Weisenberger DJ, Velicescu M, Cheng JC, Gonzales FA, Liang G, Jones PA. Role of the DNA methyltransferase variant DNMT3b3 in DNA methylation. Mol Cancer Res. 2004;2(1):62–72.

    CAS  PubMed  Google Scholar 

  30. Saito Y, Kanai Y, Sakamoto M, Saito H, Ishii H, Hirohashi S. Overexpression of a splice variant of DNA methyltransferase 3b, DNMT3b4, associated with DNA hypomethylation on peri-centromeric satellite regions during human hepatocarcinogenesis. Proc Natl Acad Sci U S A. 2002;99(15):10060–10065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ostler KR, Davis EM, Payne SL, et al. Cancer cells express aberrant DNMT3B transcripts encoding truncated proteins. Oncogene. 2007;26(38):5553–5563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ostler KR, Yang Q, Looney TJ, et al. Truncated DNMT3B Isoform DNMT3B7 Suppresses Growth, Induces Differentiation, and Alters DNA Methylation in Human Neuroblastoma. Cancer Res. 2012;72(18):4714–4723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shen L, Song CX, He C, Zhang Y. Mechanism and function of oxidative reversal of DNA and RNA methylation. Annu Rev Biochem. 2014;83:585–614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bhutani N, Burns DM, Blau HM. DNA demethylation dynamics. Cell. 2011;146(6):866–872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Carey N, Marques CJ, Reik W. DNA demethylases: anewepigenetic frontier in drug discovery. Drug Discov Today. 2011;16(15–16): 683–690.

    Article  CAS  PubMed  Google Scholar 

  36. Albert M, Helin K. Histone methyltransferases in cancer. Semin Cell Dev Biol. 2010;21(2):209–220.

    Article  CAS  PubMed  Google Scholar 

  37. Cao R, Wang L, Wang H, et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science. 2002;298(5595): 1039–1043.

    Article  CAS  PubMed  Google Scholar 

  38. Shi Y. Histone lysine demethylases: emerging roles in development, physiology and disease. Nat Rev Genet. 2007;8(11):829–833.

    Article  CAS  PubMed  Google Scholar 

  39. Simon JA, Lange CA. Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutat Res. 2008;647(1–2):21–29.

    Article  CAS  PubMed  Google Scholar 

  40. Ho L, Crabtree GR. Chromatin remodelling during development. Nature. 2010;463(7280):474–484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wischnewski F, Pantel K, Schwarzenbach H. Promoter demethylation and histone acetylation mediate gene expression of MAGE-A1, -A2, -A3, and -A12 in human cancer cells. Mol Cancer Res. 2006;4(5):339–349.

    Article  CAS  PubMed  Google Scholar 

  42. Verdone L, Caserta M, Di Mauro E. Role of histone acetylation in the control of gene expression. Biochem Cell Biol. 2005;83(3):344–353.

    Article  CAS  PubMed  Google Scholar 

  43. Bartova E, Krejci J, Harnicarova A, Galiova G, Kozubek S. Histone modifications and nuclear architecture: a review. J Histochem Cytochem. 2008;56(8):711–721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen T, Dent SY. Chromatin modifiers and remodellers: regulators of cellular differentiation. Nat Rev Genet. 2014;15(2):93–106.

    Article  CAS  PubMed  Google Scholar 

  45. Mai A, Cheng D, Bedford MT, et al. epigenetic multiple ligands: mixed histone/protein methyltransferase, acetyltransferase, and class III deacetylase (sirtuin) inhibitors. J Med Chem. 2008; 51(7):2279–2290.

    Article  CAS  PubMed  Google Scholar 

  46. Spannhoff A, Hauser AT, Heinke R, Sippl W, Jung M. The emerging therapeutic potential of histone methyltransferase and demethylase inhibitors. ChemMedChem. 2009;4(10):1568–1582.

    Article  CAS  PubMed  Google Scholar 

  47. Yokoyama A, Fujiki R, Ohtake F, Kato S. Regulated histone methyltransferase and demethylase complexes in the control of genes by nuclear receptors. Cold Spring Harb Symp Quant Biol. 2011;76:165–173.

    Article  CAS  PubMed  Google Scholar 

  48. Chang B, Chen Y, Zhao Y, Bruick RK. JMJD6 is a histone arginine demethylase. Science. 2007;318(5849):444–447.

    Article  CAS  PubMed  Google Scholar 

  49. Besant PG, Attwood PV. Histone H4 histidine phosphorylation: kinases, phosphatases, liver regeneration and cancer. Biochem Soc Trans. 2012;40(1):290–293.

    Article  CAS  PubMed  Google Scholar 

  50. Gutierrez L, Oktaba K, Scheuermann JC, Gambetta MC, Ly-Hartig N, Muller J. The role of the histone H2A ubiquitinase Sce in Polycomb repression. Development. 2012;139(1):117–127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hussain S, Foreman O, Perkins SL, et al. The de-ubiquitinase UCH-L1 is an oncogene that drives the development of lymphoma in vivo by deregulating PHLPP1 and Akt signaling. Leukemia. 2010;24:1641–1655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cohen I, Poreba E, Kamieniarz K, Schneider R. Histone modifiers in cancer: friends or foes? Genes Cancer. 2011;2:631–647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen K, Rajewsky N. The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet. 2007;8(2):93–103.

    Article  CAS  PubMed  Google Scholar 

  54. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kusenda B, Mraz M, Mayer J, Pospisilova S. MicroRNA biogenesis, functionality and cancer relevance. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2006;150(2):205–215.

    Article  CAS  PubMed  Google Scholar 

  56. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–854.

    Article  CAS  PubMed  Google Scholar 

  57. Lim LP, Lau NC, Garrett-Engele P, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 2005;433(7027):769–773.

    Article  CAS  PubMed  Google Scholar 

  58. Chen CZ, Li L, Lodish HF, Bartel DP. MicroRNAs modulate hematopoietic lineage differentiation. Science. 2004;303(5654): 83–86.

    Article  CAS  PubMed  Google Scholar 

  59. Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell. 2003;113(1):25–36.

    Article  CAS  PubMed  Google Scholar 

  60. Srivastava K, Srivastava A. Comprehensive review of genetic association studies and meta-analyses on miRNA polymorphisms and cancer risk. PloS One. 2012;7(11):e50966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Xu X, Yang X, Xing C, Zhang S, Cao J. miRNA: The nemesis of gastric cancer (Review). Oncol Lett. 2013;6(3):631–641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. White K, Kane NM, Milligan G, Baker AH. The role of miRNA in stem cell pluripotency and commitment to the vascular endothelial lineage. Microcirculation. 2012;19(3):196–207.

    Article  CAS  PubMed  Google Scholar 

  63. Duan L, Xiong X, Liu Y, Wang J. miRNA-1: functional roles and dysregulation in heart disease. Mol Biosyst. 2014;10(11):2775–2782.

    Article  CAS  PubMed  Google Scholar 

  64. Kaucsar T, Racz Z, Hamar P. Post-transcriptional gene-expression regulation by micro RNA (miRNA) network in renal disease. Adv Drug Deliv Rev. 2010;62(14):1390–1401.

    Article  CAS  PubMed  Google Scholar 

  65. Chakraborty C, Doss CG, Bandyopadhyay S, Agoramoorthy G. Influence of miRNA in insulin signaling pathway and insulin resistance: micro-molecules with a major role in type-2 diabetes. Wiley Interdiscip Rev RNA. 2014;5(5):697–712.

    Article  CAS  PubMed  Google Scholar 

  66. Yang S, Banerjee S, Freitas A, et al. miR-21 regulates chronic hypoxia-induced pulmonary vascular remodeling. Am J Physiol Lung Cell Mol Physiol. 2012;302(6):L521–L529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Maekawa R, Sato S, Yamagata Y, et al. Genome-wide DNA methylation analysis reveals a potential mechanism for the pathogenesis and development of uterine leiomyomas. PloS One. 2013; 8(6):e66632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cohen O, Kimchi A. DAP-kinase: from functional gene cloning to establishment of its role in apoptosis and cancer. Cell Death Differ. 2001;8(1):6–15.

    Article  CAS  PubMed  Google Scholar 

  69. Eisenberg-Lerner A, Kimchi A. DAPk silencing by DNA methylation conveys resistance to anti EGFR drugs in lung cancer cells. Cell Cycle. 2012;11(11):2051.

    Article  CAS  PubMed  Google Scholar 

  70. Ahmad ST, Arjumand W, Seth A, Saini AK, Sultana S. Methylation of the APAF-1 and DAPK-1 promoter region correlates with progression of renal cell carcinoma in North Indian population. Tumour Biol. 2012;33(2):395–402.

    Article  CAS  PubMed  Google Scholar 

  71. Kato K, Iida S, Uetake H, et al. Methylated TMS1 and DAPK genes predict prognosis and response to chemotherapy in gastric cancer. Int J Cancer. 2008;122(3):603–608.

    Article  CAS  PubMed  Google Scholar 

  72. Christoph F, Hinz S, Kempkensteffen C, Schostak M, Schrader M, Miller K. mRNA expression profiles of methylated APAF-1 and DAPK-1 tumor suppressor genes uncover clear cell renal cell carcinomas with aggressive phenotype. J Urol. 2007;178(6): 2655–2659.

    Article  CAS  PubMed  Google Scholar 

  73. Christoph F, Kempkensteffen C, Weikert S, et al. Methylation of tumour suppressor genes APAF-1 and DAPK-1 and in vitro effects of demethylating agents in bladder and kidney cancer. Br J Cancer. 2006;95(12):1701–1707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hafner N, Diebolder H, Jansen L, Hoppe I, Durst M, Runnebaum IB. Hypermethylated DAPK in serum DNA of women with uterine leiomyoma is a biomarker not restricted to cancer. Gynecol Oncol. 2011;121:224–229.

    Article  PubMed  CAS  Google Scholar 

  75. Feinberg AP. Phenotypic plasticity and the epigenetics of human disease. Nature. 2007;447(7143):433–440.

    Article  CAS  PubMed  Google Scholar 

  76. Yang QW, Liu S, Tian Y, et al. Methylation-associated silencing of the thrombospondin-1 gene in human neuroblastoma. Cancer Res. 2003;63(19):6299–6310.

    CAS  PubMed  Google Scholar 

  77. Navarro A, Yin P, Monsivais D, et al. Genome-wide DNA methylation indicates silencing of tumor suppressor genes in uterine leiomyoma. PloS One. 2012;7(3):e33284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sato S, Maekawa R, Yamagata Y, et al. Potential mechanisms of aberrant DNA hypomethylation on the x chromosome in uterine leiomyomas. J Reprod Dev. 2014;60(1):47–54.

    Article  CAS  PubMed  Google Scholar 

  79. Sadan O, van Iddekinge B, van Gelderen CJ, et al. Oestrogen and progesterone receptor concentrations in leiomyoma and normal myometrium. Ann Clin Biochem. 1987;24(pt 3):263–267.

    Article  PubMed  Google Scholar 

  80. Asada H, Yamagata Y, Taketani T, et al. Potential link between estrogen receptor-alpha gene hypomethylation and uterine fibroid formation. Mol Hum Reprod. 2008;14(9):539–545.

    Article  CAS  PubMed  Google Scholar 

  81. Hori M, Iwasaki M, Shimazaki J, Inagawa S, Itabashi M. Assessment of hypermethylated DNA in two promoter regions of the estrogen receptor alpha gene in human endometrial diseases. Gynecol Oncol. 2000;76(1):89–96.

    Article  CAS  PubMed  Google Scholar 

  82. Zavadil J, Ye H, Liu Z, et al. Profiling and functional analyses of microRNAs and their target gene products in human uterine leiomyomas. PloS One. 2010;5(8):e12362.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Chuang TD, Luo X, Panda H, Chegini N. miR-93/106b and their host gene, MCM7, are differentially expressed in leiomyomas and functionally target F3 and IL-8. Mol Endocrinol. 2012;26(6): 1028–1042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chuang TD, Panda H, Luo X, Chegini N. miR-200c is aberrantly expressed in leiomyomas in an ethnic-dependent manner and targets ZEBs, VEGFA, TIMP2, and FBLN5. Endocr Relat Cancer. 2012;19(4):541–556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chuang TD, Khorram O. miR-200c regulates IL8 expression by targeting IKBKB: a potential mediator of inflammation in leiomyoma pathogenesis. PloS One. 2014;9(4):e95370.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Kohli RM, Zhang Y. TET enzymes, TDG and the dynamics of DNA demethylation. Nature. 2013;502(7472):472–479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bagci H, Fisher AG. DNA demethylation in pluripotency and reprogramming: the role of tet proteins and cell division. Cell Stem Cell. 2013;13(3):265–269.

    Article  CAS  PubMed  Google Scholar 

  88. Mariani CJ, Vasanthakumar A, Madzo J, et al. TET1-mediated hydroxymethylation facilitates hypoxic gene induction in neuroblastoma. Cell Rep. 2014;7(5):1343–1352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ito S, Shen L, Dai Q, et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science. 2011; 333(6047):1300–1303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. He YF, Li BZ, Li Z, et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science. 2011;333(6047):1303–1307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Navarro A, Yin P, Ono M, et al. 5-hydroxymethylcytosine Promotes Proliferation of Human Uterine Leiomyoma: a Biological Link to a New Epigenetic Modification in Benign Tumors. J Clin Endocrinol Metab. 2014;99(11):E2437–E2445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Huang H, Jiang X, Li Z, et al. TET1 plays an essential oncogenic role in MLL-rearranged leukemia. Proc Nat Acad Sci U S A. 2013;110(29):11994–1199.

    Article  CAS  Google Scholar 

  93. Bredfeldt TG, Greathouse KL, Safe SH, Hung MC, Bedford MT, Walker CL. Xenoestrogen-induced regulation of EZH2 and histone methylation via estrogen receptor signaling to PI3K/AKT. Mol Endocrinol. 2010;24(5):993–1006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Greathouse KL, Bredfeldt T, Everitt JI, et al. Environmental estrogens differentially engage the histone methyltransferase EZH2 to increase risk of uterine tumorigenesis. Mol Cancer Res. 2012;10(4):546–557.

    Article  CAS  PubMed  Google Scholar 

  95. Greathouse KL, Cook JD, Lin K, et al. Identification of uterine leiomyoma genes developmentally reprogrammed by neonatal exposure to diethylstilbestrol. Reprod Sci. 2008;15(8):765–778.

    Article  CAS  PubMed  Google Scholar 

  96. Cook JD, Walker CL. The Eker rat: establishing a genetic paradigm linking renal cell carcinoma and uterine leiomyoma. Curr Mol Med. 2004;4(8):813–824.

    Article  CAS  PubMed  Google Scholar 

  97. Cook JD, Davis BJ, Cai SL, Barrett JC, Conti CJ, Walker CL. Interaction between genetic susceptibility and early-life environmental exposure determines tumor-suppressor-gene penetrance. Proc Natl Acad Sci U S A. 2005;102(24):8644–8649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yoo KH, Hennighausen L. EZH2 methyltransferase and H3K27 methylation in breast cancer. Int J Biol Sci. 2012;8(1):59–65.

    Article  CAS  PubMed  Google Scholar 

  99. Bachmann IM, Halvorsen OJ, Collett K, et al. EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and breast. J Clin Oncol. 2006;24(2):268–273.

    Article  CAS  PubMed  Google Scholar 

  100. Bernard D, Prasanth KV, Tripathi V, et al. A long nuclearretained non-coding RNA regulates synaptogenesis by modulating gene expression. EMBO J. 2010;29(18):3082–3093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gupta RA, Shah N, Wang KC, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010;464(7291):1071–1076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet. 2014;15(1): 7–21.

    Article  CAS  PubMed  Google Scholar 

  103. Meng L, Ward AJ, Chun S, Bennett CF, Beaudet AL, Rigo F. Towards a therapy for Angelman syndrome by targeting a long non-coding RNA. Nature. 2015;518(7539):409–412.

    Article  CAS  PubMed  Google Scholar 

  104. Maclary E, Buttigieg E, Hinten M, et al. Differentiation-dependent requirement of Tsix long non-coding RNA in imprinted X-chromosome inactivation. Nat Commun. 2014;5:4209.

    Article  CAS  PubMed  Google Scholar 

  105. Kretz M, Siprashvili Z, Chu C, et al. Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature. 2013;493(7431):231–235.

    Article  CAS  PubMed  Google Scholar 

  106. Anguera MC, Ma W, Clift D, Namekawa S, Kelleher RJ III, Lee JT. Tsx produces a long noncoding RNA and has general functions in the germline, stem cells, and brain. PLoS Genet. 2011; 7(9):e1002248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gibb EA, Brown CJ, Lam WL. The functional role of long non-coding RNA in human carcinomas. Mol Cancer. 2011;10:38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wang KC, Yang YW, Liu B, et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature. 2011;472(7341):120–124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lee H, Kim C, Ku JL, et al. A long non-coding RNA snaR contributes to 5-fluorouracil resistance in human colon cancer cells. Mol Cells. 2014;37(7):540–546.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Bonasio R, Shiekhattar R. Regulation of transcription by long noncoding RNAs. Annu Rev Genet. 2014;48:433–455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Cifuentes-Rojas C, Hernandez AJ, Sarma K, Lee JT. Regulatory interactions between RNA and polycomb repressive complex 2. Mol Cell. 2014;55(2):171–185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lee JT. Epigenetic regulation by long noncoding RNAs. Science. 2012;338(6113):1435–1439.

    Article  CAS  PubMed  Google Scholar 

  113. Zheng Y, Tabbaa ZM, Khan Z, et al. Epigenetic Regulation of Uterine Biology by Transcription Factor KLF11 via Post-translational Histone Deacetylation of Cytochrome p450 Metabolic Enzymes. Endocrinology. 2014;155(11):4507–4520.

    Article  PubMed  CAS  Google Scholar 

  114. Spittau B, Krieglstein K. Klf10 and Klf11 as mediators of TGF-beta superfamily signaling. Cell Tissue Res. 2012;347(1):65–72.

    Article  CAS  PubMed  Google Scholar 

  115. Daftary GS, Zheng Y, Tabbaa ZM, et al. A novel role of the Sp/KLF transcription factor KLF11 in arresting progression of endometriosis. PloS One. 2013;8(3):e60165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Yin P, Lin Z, Reierstad S, et al. Transcription factor KLF11 integrates progesterone receptor signaling and proliferation in uterine leiomyoma cells. Cancer Res. 2010;70(4):1722–1730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wei LH, Torng PL, Hsiao SM, Jeng YM, Chen MW, Chen CA. Histone deacetylase 6 regulates estrogen receptor alpha in uterine leiomyoma. Reprod Sci. 2011;18(8):755–762.

    Article  CAS  PubMed  Google Scholar 

  118. Aldana-Masangkay GI, Sakamoto KM. The role of HDAC6 in cancer. J Biomed Biotechnol. 2011;2011:875824.

    Article  PubMed  CAS  Google Scholar 

  119. Svotelis A, Bianco S, Madore J, et al. H3K27 demethylation by JMJD3 at a poised enhancer of anti-apoptotic gene BCL2 determines ERalpha ligand dependency. EMBO J. 2011;30(19): 3947–3961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Niv Y. Microsatellite instability and MLH1 promoter hyper-methylation in colorectal cancer. World J Gastroenterol. 2007; 13(12):1767–1769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Esteller M, Risques RA, Toyota M, et al. Promoter hypermethylation of the DNA repair gene O(6)-methylguanine-DNA methyltransferase is associated with the presence of G:C to A: T transition mutations in p53 in human colorectal tumorigenesis. Cancer Res. 2001;61(12):4689–4692.

    CAS  PubMed  Google Scholar 

  122. Esteller M, Garcia-Foncillas J, Andion E, et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med. 2000;343(19): 1350–1354.

    Article  CAS  PubMed  Google Scholar 

  123. Esteller M, Toyota M, Sanchez-Cespedes M, et al. Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is associated with G to A mutations in K-ras in colorectal tumorigenesis. Cancer Res. 2000;60(9):2368–2371.

    CAS  PubMed  Google Scholar 

  124. Moore SD, Herrick SR, Ince TA, et al. Uterine leiomyomata with t(10;17) disrupt the histone acetyltransferase MORF. Cancer Res. 2004;64(16):5570–5577.

    Article  CAS  PubMed  Google Scholar 

  125. Champagne N, Bertos NR, Pelletier N, et al. Identification of a human histone acetyltransferase related to monocytic leukemia zinc finger protein. J Biol Chem. 1999;274(40):28528–28536.

    Article  CAS  PubMed  Google Scholar 

  126. Pelletier N, Champagne N, Lim H, Yang XJ. Expression, purification, and analysis of MOZ and MORF histone acetyltransferases. Methods. 2003;31(1):24–32.

    Article  CAS  PubMed  Google Scholar 

  127. Georgieva B, Milev I, Minkov I, Dimitrova I, Bradford AP, Baev V. Characterization of the uterine leiomyoma microRNAome by deep sequencing. Genomics. 2012;99(5):275–281.

    Article  CAS  PubMed  Google Scholar 

  128. Wang T, Zhang X, Obijuru L, et al. A micro-RNA signature associated with race, tumor size, and target gene activity in human uterine leiomyomas. Genes Chromosomes Cancer. 2007; 46(4):336–347.

    Article  CAS  PubMed  Google Scholar 

  129. Marsh EE, Lin Z, Yin P, Milad M, Chakravarti D, Bulun SE. Differential expression of microRNA species in human uterine leiomyoma versus normal myometrium. Fertil Steril. 2008;89: 1771–1776.

    Article  CAS  PubMed  Google Scholar 

  130. Ingraham SE, Lynch RA, Surti U, et al. Identification and characterization of novel human transcripts embedded within HMGA2 in t(12;14)(q15;q24.1) uterine leiomyoma. Mutat Res. 2006;602(1–2):43–53.

    Article  CAS  PubMed  Google Scholar 

  131. Fitzgerald JB, Chennathukuzhi V, Koohestani F, Nowak RA, Christenson LK. Role of microRNA-21 and programmed cell death 4 in the pathogenesis of human uterine leiomyomas. Fertil Steril. 2012;98(3):726–734. e2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Qiang W, Liu Z, Serna VA, et al. Down-regulation of miR-29b is essential for pathogenesis of uterine leiomyoma. Endocrinology. 2014;155(3):663–669.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Rinaldi L, Benitah SA. Epigenetic regulation of adult stem cell function[published online July 24, 2014]. FEBS J. 2014.

  134. Laugesen A, Helin K. Chromatin repressive complexes in stem cells, development, and cancer. Cell Stem Cell. 2014;14(6):735–751.

    Article  CAS  PubMed  Google Scholar 

  135. Mazzarella L, Jorgensen HF, Soza-Ried J, et al. Embryonic stem cell-derived hemangioblasts remain epigenetically plastic and require PRC1 to prevent neural gene expression. Blood. 2011; 117(1):83–87.

    Article  CAS  PubMed  Google Scholar 

  136. Majewski IJ, Blewitt ME, de Graaf CA, et al. Polycomb repressive complex 2 (PRC2) restricts hematopoietic stem cell activity. PLoS Biol. 2008;6(4):e93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Ezura Y, Sekiya I, Koga H, Muneta T, Noda M. Methylation status of CpG islands in the promoter regions of signature genes during chondrogenesis of human synovium-derived mesenchymal stem cells. Arthritis Rheum. 2009;60(5):1416–1426.

    Article  PubMed  Google Scholar 

  138. Kang MI, Kim HS, Jung YC, et al. Transitional CpG methylation between promoters and retroelements of tissue-specific genes during human mesenchymal cell differentiation. J Cell Bioch. 2007;102(1):224–239.

    Article  CAS  Google Scholar 

  139. Sakamoto H, Kogo Y, Ohgane J, et al. Sequential changes in genome-wide DNA methylation status during adipocyte differentiation. Biochem Biophys Res Commun. 2008;366(2):360–366.

    Article  CAS  PubMed  Google Scholar 

  140. Mohn F, Weber M, Rebhan M, et al. Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol Cell. 2008;30(6):755–766.

    Article  CAS  PubMed  Google Scholar 

  141. Linder D, Gartler SM. Glucose-6-phosphate dehydrogenase mosaicism: utilization as a cell marker in the study of leiomyomas. Science. 1965;150(3692):67–69.

    Article  CAS  PubMed  Google Scholar 

  142. Alam NA, Rowan AJ, Wortham NC, et al. Genetic and functional analyses of FH mutations in multiple cutaneous and uterine leiomyomatosis, hereditary leiomyomatosis and renal cancer, and fumarate hydratase deficiency. Hum Mol Genet. 2003;12(11):1241–1252.

    Article  CAS  PubMed  Google Scholar 

  143. Linehan WM, Rouault TA. Molecular pathways: Fumarate hydratase-deficient kidney cancer–targeting the Warburg effect in cancer. Clin Cancer Res. 2013;19(13):3345–3352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Barker KT, Spendlove HE, Banu NS, et al. No evidence for epigenetic inactivation of fumarate hydratase in leiomyomas and leiomyosarcomas. Cancer Lett. 2006;235(1):136–140.

    Article  CAS  PubMed  Google Scholar 

  145. Ono M, Maruyama T, Masuda H, et al. Side population in human uterine myometrium displays phenotypic and functional characteristics of myometrial stem cells. Proc Natl Acad Sci U S A. 2007;104(47):18700–18705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Ono M, Qiang W, Serna VA, et al. Role of stem cells in human uterine leiomyoma growth. PloS One. 2012;7(5):e36935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Ono M, Yin P, Navarro A, et al. Paracrine activation of WNT/betacatenin pathway in uterine leiomyoma stem cells promotes tumor growth. Proc Natl Acad Sci U S A. 2013;110(42):17053–17058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Galvez BG, Martin NS, Salama-Cohen P, et al. An adult myometrial pluripotential precursor that promotes healing of damaged muscular tissues. In Vivo. 2010;24(4):431–441.

    CAS  PubMed  Google Scholar 

  149. Zhou S, Yi T, Shen K, Zhang B, Huang F, Zhao X. Hypoxia: the driving force of uterine myometrial stem cells differentiation into leiomyoma cells. Med Hypotheses. 2011;77(6):985–986.

    Article  PubMed  Google Scholar 

  150. Chang HL, Senaratne TN, Zhang L, et al. Uterine leiomyomas exhibit fewer stem/progenitor cell characteristics when compared with corresponding normal myometrium. Reprod Sci. 2010;17(2):158–167.

    Article  PubMed  Google Scholar 

  151. Mas A, Cervello I, Gil-Sanchis C, et al. Identification and characterization of the human leiomyoma side population as putative tumor-initiating cells. Fertil Steril. 2012;98(3): 741–751. e6.

    Article  PubMed  Google Scholar 

  152. Maruyama T, Ono M, Yoshimura Y. Somatic stem cells in the myometrium and in myomas. Semin Reprod Med. 2013;31(1): 77–81.

    Article  PubMed  Google Scholar 

  153. Mas A, Cervello I, Gil-Sanchis C, Simon C. Current understanding of somatic stem cells in leiomyoma formation. Fertil Steril. 2014;102(3):613–620.

    Article  CAS  PubMed  Google Scholar 

  154. Szotek PP, Chang HL, Zhang L, et al. Adult mouse myometrial label-retaining cells divide in response to gonadotropin stimulation. Stem Cells. 2007;25(5):1317–1325.

    Article  CAS  PubMed  Google Scholar 

  155. Ono M, Yin P, Navarro A, et al. Inhibition of canonical WNT signaling attenuates human leiomyoma cell growth. Fertil Steril. 2014;101(5):1441–1449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Benoit YD, Guezguez B, Boyd AL, Bhatia M. Molecular pathways: epigenetic modulation of Wnt/glycogen synthase kinase-3 signaling to target human cancer stem cells. Clin Cancer Res. 2014;20(21):5372–5378.

    Article  CAS  PubMed  Google Scholar 

  157. Pastor WA, Pape UJ, Huang Y, et al. Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature. 2011;473(7347):394–397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Booth MJ, Branco MR, Ficz G, et al. Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science. 2012;336(6083):934–937.

    Article  CAS  PubMed  Google Scholar 

  159. Raiber EA, Beraldi D, Ficz G, et al. Genome-wide distribution of 5-formylcytosine in embryonic stem cells is associated with transcription and depends on thymine DNA glycosylase. Genome Biol. 2012;13(8):R69.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiwei Yang PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Mas, A., Diamond, M.P. et al. The Mechanism and Function of Epigenetics in Uterine Leiomyoma Development. Reprod. Sci. 23, 163–175 (2016). https://doi.org/10.1177/1933719115584449

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719115584449

Keywords

Navigation