Skip to main content

Advertisement

Log in

Driving Human Granulosa-Luteal Cells Recovered From In Vitro Fertilization Cycles Toward the Follicular Phase Phenotype

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Culture systems are available for human granulosa cells (GCs) that perpetuate luteinization. The present study examines the plating density effects and long-term serum-free culture on the in vitro dynamics differentiation of luteinizing human GCs. Cells were cultured in serum-free α-minimum essential medium (α-MEM) or serum-based tissue culture medium (TCM). The time course of GCs morphology and secretion of estradiol (E2), progesterone (P4), and relaxin were analyzed after 48, 96, and 144 hours of culture. Other functional markers as follicle-stimulating hormone/luteinizing hormone receptors and steroidogenic enzymes were investigated at the end of culture. The morphology of an α-MEM cell rather than a TCM cell resembles more closely that seen in vivo. Compared to TCM cultures, α-MEM cells secreted 93.7% and 87.2% more E2 and approximately 7% and 17% of the amount of P4 when cultured at densities of 2 × 104 or 4 × 104 cells/well, respectively. Relaxin secretion was significantly reduced in α-MEM cultures. α-MEM cells were estrogenic and expressed the CYP19 gene. Levels of CYP17 increased about 8-fold in α-MEM cells above the levels found in TCM cells. Our results reveal new insights into human GCs differentiation in vitro and demonstrate the critical importance of the culture system and cell-plating density on the establishment of estrogenic or progestogenic GC phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Desai N, Alex A, AbdelHafez F, Calabro A, Goldfarb J, Fleischman A. Three-dimensional in vitro follicle growth: overview of culture models, biomaterial, design parameters and future directions. Reprod Biol Endocrinol. 2010;8:119.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Johnson J, Higdon III HL, Boone WR. Effect of human granulosa cell co-culture using standard culture media on the maturation and fertilization potential of immature human oocytes. Fertil Steril. 2008;90(5):1674–1679.

    Article  PubMed  Google Scholar 

  3. Lin YH, Hwang JL, Seow KM, Huang LW, Chen HJ, Tzeng CR. Effects of growth factors and granulosa cell co-culture on in-vitro maturation of oocytes. Reprod Biomed Online. 2009;19(2):164–170.

    Article  Google Scholar 

  4. Ophir L, Yung Y, Maman E, et al. Establishment and validation of a model for non-luteinized human mural granulosa cell culture. Mol Cel Endocrinol. 2014;384(1–2):165–174.

    Article  CAS  Google Scholar 

  5. Amsterdam A, Rotmensch S, Ben-Zeev A. Coordinated regulation of morphological and biochemical differentiation in a steroidogenic cell: the granulosa cell model. Trends Biochem Sci. 1989;14(9):377–382.

    Article  CAS  PubMed  Google Scholar 

  6. Amsterdam A, Phehn-Dujowich D, Suh BS. Structure–function relationships during differentiation of normal and oncogene-transformed granulosa cells. Biol Reprod. 1992;46(4):513–522.

    Article  CAS  PubMed  Google Scholar 

  7. Motta PM, Nottola SA, Familiari G, Makabe S, Stallone T, Macchiarelli G. Morphodynamics of the follicular–luteal complex during early ovarian development and reproductive life. Int Rev Cytol. 2003;223:177–288.

    Article  PubMed  Google Scholar 

  8. Gutierrez CG, Glazyrin AL, Robertson GW, et al. Ultra-structural characteristics of bovine granulosa cells associated with maintenance of oestradiol production in vitro. Mol Cell Endocrinol. 1997;134(1):51–58.

    Article  CAS  PubMed  Google Scholar 

  9. Carnegie JA, Byard R, Dardick I, Tsang BK. Culture of granulosa cells in collagen gels: the influence of cell shape on steroidogenesis. Biol Reprod. 1988;38(4):881–890.

    Article  CAS  PubMed  Google Scholar 

  10. Richards JS. Maturation of ovarian follicles: actions and interactions of pituitary and ovarian hormones on follicular cell differentiation. Physiol Rev. 1980;60(1):51–89.

    Article  CAS  PubMed  Google Scholar 

  11. Smith MF, McIntush EW, Smith GW. Mechanism associated with corpus luteum development. J Anim Sci. 1994;72(7):1857–1872.

    Article  CAS  PubMed  Google Scholar 

  12. Azhar S, Tsai L, Medicherla S, Chandrazekher Y, Giudice L, Reaven E. Human granulosa cells use high density lipoprotein cholesterol for steroidogenesis. J Clin Endocrinol Metab. 1998;83(3):983–991.

    CAS  PubMed  Google Scholar 

  13. Devoto L, Kohen P, Vega M, et al. Control of human luteal steroidogenesis. Mol Cel Endocrinol. 2002;186(2):137–141.

    Article  CAS  Google Scholar 

  14. Drouineaud V, Sagot P, Garrido C, et al. Inhibition of progesterone production in human luteinized granulosa cells treated with LXR agonists. Mol Hum Reprod. 2007;13(6):373–379.

    Article  CAS  PubMed  Google Scholar 

  15. Imai M, Muraki M, Takamatsu K, Saito H, Seiki M, Takahashi Y. Spontaneous transformation of human granulosa cell tumours into an aggressive phenotype: a metastasis model cell line. BMC Cancer. 2008;8:319. doi:10.1186/1471-2407-8-319.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Pescador N, Stocco DM, Murphy BD. Growth factor modulation of steroidogenic acute regulatory protein and luteinization in the pig ovary. Biol Reprod. 1999;60(6):1453–1461.

    Article  CAS  PubMed  Google Scholar 

  17. Bar-Ami S, Gitay-Gore H. Altered steroidogenic activity of human granulosa-lutein cells at different cell densities in culture. Mol Cell Endocrinol. 1993;90(2):157–164.

    Article  CAS  PubMed  Google Scholar 

  18. Rodgers RJ, Waterman MR, Simpson ER. Cytochrome P-450scc, P-45017α, adrenodoxin, and reduced nicotinamide adenine dinucleotide phosphate-cytochrome P-450 reductase in bovine follicles and corpora lutea. Changes in specific contents during the ovarian cycle. Endocrinol. 1986;118(4):1366–1374.

    Article  CAS  Google Scholar 

  19. Monga R, Sharma I, Datta TK, Singh D. Characterization of serum-free buffalo granulosa cell culture and analysis of genes involved in terminal differentiation from FSH- to LH-responsive phenotype. Domest Anim Endocrinol. 2011;41(4):195–206.

    Article  CAS  PubMed  Google Scholar 

  20. Voss AK, Fortune JE. Levels of messenger-ribonucleic-acid for cytochrome-P450 17-alpha-hydroxylase and p450 aromatase in preovulatory bovine follicles decrease after the luteinizing-hormone surge. Endocrinol. 1993;132(5):2239–2245.

    Article  CAS  Google Scholar 

  21. LaVoie HA, Benoit AM, Garmey JC, Dailey RA, Wright DJ, Veldhuis JD. Coordinate developmental expression of genes regulating sterol economy and cholesterol side-chain cleavage in the porcine ovary. Biol Reprod. 1997;57(2):402–407.

    Article  Google Scholar 

  22. Juengel JL, Guy MK, Tandeski TR, McGuire WJ, Niswender GD. Steady-state concentrations of messenger ribonucleic acid encoding cytochrome P450 side-chain cleavage and 3b-hydroxysteroid dehydrogenase/D5, D4 isomerase in ovine corpora lutea during the estrous cycle. Biol Reprod. 1994;51(3):380–384.

    Article  CAS  PubMed  Google Scholar 

  23. Suzuki K, Tamaoki B. Acute decrease by human chorionic gonadotropin of the activity of preovulatory ovarian 17 alpha-hydroxylase and C-17-C-20 lyase is due to decrease of microsomal cytochrome P-450 through de novo synthesis of ribonucleic acid and protein. Endocrinol. 1983;113(6):1985–1991.

    Article  CAS  Google Scholar 

  24. Johnson DC. Loss of ovarian 17 alpha-hydroxylase/C17,20-lyase activity induced by human chorionic gonadotropin is correlated with in vivo substrate availability. J Steroid Biochem. 1988;29(5):545–551.

    Article  CAS  PubMed  Google Scholar 

  25. Fitzpatrick SL, Carlone DL, Robker RL, Richards JS. Expression of aromatase in the ovary: down-regulation of mRNA by the ovulatory luteinizing hormone surge. Steroids. 1997;62(1):197–206.

    Article  CAS  PubMed  Google Scholar 

  26. Schipper I, Fauser BC, van Gaver EB, Zarutskie PW, Dahl KD. Development of a human granulosa cell culture model with follicle stimulating hormone responsiveness. Hum Reprod. 1993;8(9):1380–1386.

    Article  CAS  PubMed  Google Scholar 

  27. Stewart DR, Vandevoort CA. Simulation of human luteal endocrine function with granulosa lutein cell culture. J Clin Endocrinol Metab. 1997;82(9):3078–3083.

    CAS  PubMed  Google Scholar 

  28. Alexopoulos A, Shahid J, Ongley HZ, Richardson MC. Luteinized human granulosa cells are associated with endogenous basement membrane-like components in culture. Mol Hum Reprod. 2000;6(4):324–330.

    Article  CAS  PubMed  Google Scholar 

  29. Oki Y, Ono H, Motohashi T, Sugiura N, Nobusue H, Kano K. Dedifferentiated follicular granulosa cells derived from pig ovary can transdifferentiate into osteoblasts. Biochem J. 2012;447(2):239–248.

    Article  CAS  PubMed  Google Scholar 

  30. Lindeberg M, Carlstrom K, Ritvos O, Hovatta O. Gonadotrophin stimulation of non-luteinized granulosa cells increases steroid production and the expression of enzymes involved in estrogen and progesterone synthesis. Hum Reprod. 2007;22(2):401–406.

    Article  CAS  PubMed  Google Scholar 

  31. Jeppesen JV, Kristensen SG, Nielsen ME, et al. LH-receptor gene expression in human granulosa and cumulus cells from antral and preovulatory follicles. J Clin Endocrinol Metab. 2012;97(8): E1524–E1531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Campbell BK, Scaramuzzi RJ, Webb R. Induction and maintenance of oestradiol and immunoreactive inhibin production with FSH by ovine granulosa cells cultured in serum-free media. J Reprod Fertil. 1996;106(1):7–16.

    Article  CAS  PubMed  Google Scholar 

  33. Gutierrez CG, Campbell BK, Webb R. Development of a long-term bovine granulosa cell culture system: induction and maintenance of estradiol production, response to follicle-stimulating hormone, and morphological characteristics. Biol Reprod. 1997;56(3):608–616.

    Article  CAS  PubMed  Google Scholar 

  34. Campos CO, Bernuci MP, Vireque AA, et al. Preventing microbial contamination during long-term in vitro culture of human granulosa-lutein cells: an ultrastructural analysis. ISRN Obstet Gynecol. 2012;2012:152781.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(—Delta Delta C(t)) method. Methods. 2001;25(4):402–408.

    Article  CAS  PubMed  Google Scholar 

  36. Picton HM, Campbell BK, Hunter MG. Maintenance of oestradiol production and expression of cytochrome P450 aromatase enzyme mRNA in long-term serum-free cultures of pig granulosa cells. J Reprod Fertil. 1999;115(1):67–77.

    Article  CAS  PubMed  Google Scholar 

  37. Greisen S, Ledet T, Ovesen P. Effects of androstenedione, insulin and luteinizing hormone on steroidogenesis in human granulose luteal cells. Hum Reprod. 2001;16(10):2061–2065.

    Article  CAS  PubMed  Google Scholar 

  38. Hillier SG, Zeleznik AJ, Knazek RA, Ross GT. Hormonal regulation of preovulatory follicle maturation in the rat. J Reprod Fertil. 1980;60(1):219–229.

    Article  CAS  PubMed  Google Scholar 

  39. Chaffin CL, Dissen GA, Stouffer RL. Hormonal regulation of steroidogenic enzyme expression in granulosa cells during the peri-ovulatory interval in monkeys. Mol Hum Reprod. 2000;6(1):11–18.

    Article  CAS  PubMed  Google Scholar 

  40. Hild-Petito S, West NB, Brenner RM, Stouffer RL. Localization of androgen receptor in the follicle and corpus luteum of the primate ovary during the menstrual cycle. Biol Reprod. 1991;44(3):561–568.

    Article  CAS  PubMed  Google Scholar 

  41. Devoto L, Vega M, Navarro V, Sir T, Alba F, Castro O. Regulation of steroid hormone synthesis by human corpora lutea: failure of follicle-stimulating hormone to support steroidogenesis in vivo and in vitro. Fertil Steril. 1989;51(4):628–633.

    Article  CAS  PubMed  Google Scholar 

  42. Lindeberg M, Carlström K, Ritvos O, Hovatta O. Gonadotrophin stimulation of nonluteinized granulosa cells increases steroid production and the expression of enzymes involved in estrogen and progesterone synthesis. Hum Reprod. 2007;22(2):401–406.

    Article  CAS  PubMed  Google Scholar 

  43. Montgomery Rice V, Limback SD, Roby KF, Terranova PF. Differential responses of granulose cells from small and large follicles to follicle stimulating hormone (FSH) during the menstrual cycle and acyclicity: effects of tumour necrosis factor-α. Hum Reprod. 1998;13(5):1285–1291.

    Article  CAS  PubMed  Google Scholar 

  44. Zolti M, Meirom R, Shemeshe M, et al. Granulosa cells as a source and target organ for tumor necrosis factor-α. FEBS Letts. 1990;261(2):253–255.

    Article  CAS  Google Scholar 

  45. Silva MJ, Price CA. Effect of follicle-stimulating hormone on steroid secretion and messenger ribonucleic acids encoding cytochromes P450 aromatase and cholesterol side-chain cleavage in bovine granulosa cells in vitro. Biol Reprod. 2000;62(1):186–191.

    Article  CAS  PubMed  Google Scholar 

  46. Tamura T, Kitawaki J, Yamamoto T, et al. Immunohistochemical localization of 17α-hydroxylase/17,20-lyase and aromatase cytochrome P450 in the human ovary during the menstrual cycle. J Endocrinol. 1992;135(3):589–595.

    Article  CAS  PubMed  Google Scholar 

  47. Coley AJ, Kaminski MA, Dubowsky SA, Jablonka-Shariff A, Redmer DA, Reynolds LP, Immunohistichemical localization of 3 beta-hydroxysteroid dehydrogenase and P450 17 alpha-hydroxylase during follicular and luteal development in pigs, sheep and cows. Biol Reprod. 1995;52(5):1081–1094.

    Article  Google Scholar 

  48. Voutilainen R, Tapanainen J, Chung BC, Matteson KJ, Miller WL. Hormonal regulation of P450scc (20,22-desmolase) and P450c17 (17α-hydroxylase/17,20-lyase) in cultured human granulose cells. J Clin Endocrinol Metab. 1986;63(1):202–207.

    Article  CAS  PubMed  Google Scholar 

  49. Moran FM, VandeVoort CA, Overstreet JW, Lasley BL, Conley AJ. Molecular target of endocrine disruption in human luteinizing granulose cells by 2,3,7,8-tetrachlorodibenzo-p-dioxin: inhibition of estradiol secretion due to decreased, 17α-hydroxylase/ 17,20-lyase cytochrome P450. Endocrinology. 2003;144(2):467–473.

    Article  CAS  PubMed  Google Scholar 

  50. Patel SS, Beshay VE, Escobar JC, Suzuki T, Carr BR. Molecular mechanism for repression of 17α-hydroxylase expression and androstenedione production in granulose cells. J Clin Endocrinol Metab. 2009;94(12):5163–5168.

    Article  CAS  PubMed  Google Scholar 

  51. Patel SS, Beshay VE, Escobar JC, Carr BR. 17α-hydroxylase (CYP17) expression and subsequent androstenedione production in the human ovary. Reprod Sci. 2010;17(11):978–986.

    Article  CAS  PubMed  Google Scholar 

  52. Hedin L, Rodgers RJ, Simpson ER, Richards JS. Changes in content of cytochrome P45017α, cytochrome P450scc, and 3-hydroxy-3-methylglutaryl CoA reductase in developing rat ovarian follicles and corpora lutea: correlation with theca cell steroidogenesis. Biol Reprod. 1987;37(1):211–223.

    Article  CAS  PubMed  Google Scholar 

  53. Hanukoglu I. Steroidogenic enzymes: structure, function, and role in regulation of steroid hormone biosynthesis. J Steroid Biochem Biol. 1992;43(8):779–804.

    Article  CAS  Google Scholar 

  54. Higuchi A, Kominami S, Takemori S. Kinetic control of steroidogenesis by steroid concentration in guinea pig adrenal microsomes. Biochim Biophys Acta. 1991;1084(3):240–246.

    Article  CAS  PubMed  Google Scholar 

  55. Mahajan DK, Samuels LT. Inhibition of 17,20(17-hydroxyprogesterone)-lyase by progesterone. Steroids. 1975;25(2):217–228.

    Article  CAS  PubMed  Google Scholar 

  56. Johnson DC. Quantitative changes in ovarian 17α-hydroxylase/ C17,20-lyase and aromatase activities during the estrous cycle of the hamster. Proc Soc Exp Biol Med. 1987;184(1):14–18.

    Article  CAS  PubMed  Google Scholar 

  57. Johnson DC, Crane LH. Inhibitory and stimulatory effect of oestrogens upon ovarian 17α-hydroxylase/C17,20-lyase in immature hypophysectomized rats treated with gonadotrophin. J Endocrinol. 1995;145(1):59–67.

    Article  CAS  PubMed  Google Scholar 

  58. Hoffman GE, Smith MS, Verbalis JG. C-fos and immediate early gene products as markers of activity in neuroendocrine systems. Front Neuroendocrinol. 1993;14(3):173–213.

    Article  CAS  PubMed  Google Scholar 

  59. Shea-Eaton W, Sandhoff TW, Lopez D, Hales DB, McLean MP. Transcriptional repression of the rat steroidogenic acute regulatory (StAR) protein gene by the AP-1 family member c-Fos. Mol Cell Endocrinol. 2002;188(1–2):161–170.

    Article  CAS  PubMed  Google Scholar 

  60. Chaffikin L, Luciano A, Peluso J. The role of progesterone in regulating human granulose cell proliferation and differentiation in vitro. J Clin Endocrinol Metab. 1993;76(3):696–700.

    Google Scholar 

  61. Gong JG, McBride D, Bramley TA, Webb R. Effects of recombinant bovine somatotrophin, insulin-like growth factor-I and insulin on bovine granulosa cell steroidogenesis in vitro. J Endocrinol. 1994;143(1):157–164.

    Article  CAS  PubMed  Google Scholar 

  62. Langhout DJ, Spicer LJ, Geisert RD. Development of a culture system for bovine granulosa cells: effects of growth hormone, estradiol, and gonadotropins on cell proliferation, steroidogenesis, and protein synthesis. J Anim Sci. 1991;69(8):3321–3334.

    Article  CAS  PubMed  Google Scholar 

  63. Wrathall JH, Knight PG. Effects of inhibin-related peptides and oestradiol on androstenedione and progesterone secretion by bovine theca cells in vitro. J Endocrinol. 1995;145(3):491–500.

    Article  CAS  PubMed  Google Scholar 

  64. Sedelaar JPM, Isaacs JT. Tissue culture media supplemented with 10% fetal calf serum contains a castrate level of testosterone. Prostate. 2009;69(16):1724–1729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Portela VM, Zamberlam G, Price CA. Cell-plating density alters the ratio of estrogenic to progestagenic enzyme gene expression in cultured granulosa cells. Fertil Steril. 2010;93(6):2055–2055.

    Article  CAS  Google Scholar 

  66. Schmidt CL, Kendall JZ, Dandekar PV, Quigley MM, Schmidt KL. Characterization of long-term monolayer cultures of human granulosa cells from follicles of different size and exposed in vivo to clomiphene citrate and hCG. J Reprod Fertil. 1984;71(1):279–287.

    Article  CAS  PubMed  Google Scholar 

  67. Mayerhofer A, Engling R, Stecher B, Ecker A, Sterzik K, Gratzi M. Relaxin triggers calcium transients in human granulosa-lutein cells. Eur J Endocrinol. 1995;132(4):507–513.

    Article  CAS  PubMed  Google Scholar 

  68. Stewart DR, Overstreet JW, Celniker AC, et al. The relationship between hCG and Relaxin secretion in normal pregnancies vs periimplantation spontaneous abortions. Clin Endocrinol (Oxf). 1993;38(4):379–385.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Carolina Japur de Sá Rosa-e-Silva MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vireque, A.A., Campos, J.R., Dentillo, D.B. et al. Driving Human Granulosa-Luteal Cells Recovered From In Vitro Fertilization Cycles Toward the Follicular Phase Phenotype. Reprod. Sci. 22, 1015–1027 (2015). https://doi.org/10.1177/1933719115570909

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719115570909

Keywords

Navigation