Skip to main content

Advertisement

Log in

Effect of Imatinib Coadministration on in Vitro Oocyte Acquisition and Subsequent Embryo Development in Cyclophosphamide-Treated Mice

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

The study aimed to investigate the effect of imatinib coadministration on in vitro oocyte acquisition and subsequent embryo development in cyclophosphamide (Cp)-treated mice. Female BDF1 mice were injected with 5 IU equine chorionic gonadotropin (eCG) followed by 5 IU human chorionic gonadotropin 48 hours later and then oocytes were retrieved 14 hours later. Twenty-four hours prior to eCG administration, 25, 50, or 75 mg/kg Cp with or without 7.5 mg/kg imatinib was injected. In the 25 and 50 mg/kg Cp groups, imatinib coadministration significantly enhanced the percentage of mature oocytes (+16.4% and +10.4%) and significantly decreased the percentage of dead oocytes (−25.9% and −15.3%). Imatinib coadministration significantly enhanced the fertilization rate (FR) in the 50 mg/kg Cp group (+12.2%). Intraoocyte spindle integrity was significantly affected by Cp and was rescued by imatinib coadministration. Coadministration of imatinib prior to ovarian stimulation has the benefit of enhancing oocyte maturity and the in vitro FR in Cp-treated mice .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oktem O, Oktay K. Quantitative assessment of the impact of chemotherapy on ovarian follicle reserve and stromal function. Cancer. 2007;110(10):2222–2229.

    Article  CAS  PubMed  Google Scholar 

  2. Devine PJ, Perreault SD, Luderer U. Roles of reactive oxygen species and antioxidants in ovarian toxicity. Biol Reprod. 2012; 86(2):27.

    Article  PubMed  Google Scholar 

  3. Meirow D, Nugent D. The effects of radiotherapy and chemotherapy on female reproduction. Hum Reprod Update. 2001;7(6): 535–543.

    Article  CAS  PubMed  Google Scholar 

  4. Gucer F, Balkanli-Kaplan P, Doganay L, et al. Effect of paclitaxel on primordial follicular reserve in mice. Fertil Steril. 2001;76(3): 628–629.

    Article  CAS  PubMed  Google Scholar 

  5. De Vos M, Devroey P, Fauser BC. Primary ovarian insufficiency. Lancet. 2010;376(9744):911–921.

    Article  PubMed  Google Scholar 

  6. Anchan RM, Ginsburg ES. Fertility concerns and preservation in younger women with breast cancer. Crit Rev Oncol Hematol. 2010;74(3):175–192.

    Article  PubMed  Google Scholar 

  7. Donnez J, Dolmans MM. Preservation of fertility in females with haematological malignancy. Br J Haematol. 2011;154(2): 175–184.

    Article  PubMed  Google Scholar 

  8. Pydyn EF, Ataya KM. Effect of cyclophosphamide on mouse oocyte in vitro fertilization and cleavage: recovery. Reprod Toxicol. 1991;5(1):73–78.

    Article  CAS  PubMed  Google Scholar 

  9. Koike M, Kumasako Y, Otsu E, Arake Y, Utsunomiya T. The influence of the anti-cancer drug cyclophosphamide on fertilization and embryo growth in a mouse medel. Fertil Steril. 2012; 98(suppl 3):S117.

    Article  Google Scholar 

  10. Barekati Z, Gourabi H, Valojerdi MR, Yazdi PE. Previous maternal chemotherapy by cyclophosphamide (Cp) causes numerical chromosome abnormalities in preimplantation mouse embryos. Reprod Toxicol. 2008;26(3–4):278–281.

    Article  CAS  PubMed  Google Scholar 

  11. Ataya KM, Pydyn EF, Sacco AG. Effect of “activated” cyclophosphamide on mouse oocyte in vitro fertilization and cleavage. Reprod Toxicol. 1988;2(2):105–109.

    CAS  PubMed  Google Scholar 

  12. Jeong K, KArsy M, Oktay K. Impact of chemotherapy exposure on fertility preservation cycle outcomes. Fertil Steril. 2012; 98(suppl 3):S95.

    Article  Google Scholar 

  13. Yuan ZP, Mailhes JB. Aneuploidy determination in C-banded mouse metaphase II oocytes following cyclophosphamide treatment in vivo. Mutat Res. 1987;179(2):209–214.

    Article  CAS  PubMed  Google Scholar 

  14. Meirow D, Epstein M, Lewis H, Nugent D, Gosden RG. Administration of cyclophosphamide at different stages of follicular maturation in mice: effects on reproductive performance and fetal malformations. Hum Reprod. 2001;16(4):632–637.

    Article  CAS  PubMed  Google Scholar 

  15. Visani G, Piccaluga P, Malagola M, Isidori A. Efficacy of dasati-nib in conjunction with alpha-interferon for the treatment of imatinib-resistant and dasatinib-resistant Ph+ acute lymphoblastic leukemia. Leukemia. 2009;23(9):1687–1688.

    Article  CAS  PubMed  Google Scholar 

  16. Gonfloni S, Di Telia L, Caldarola S, et al. Inhibition of the c-Abl-TAp63 pathway protects mouse oocytes from chemotherapy-induced death. Nat Med. 2009;15(10):1179–1185.

    Article  CAS  PubMed  Google Scholar 

  17. Jo JW, Jee BC, Lee JR, Suh CS. Effect of antifreeze protein supplementation in vitrification medium on mouse oocyte developmental competence. Fertil Steril. 2011;96(5):1239–1245.

    Article  CAS  PubMed  Google Scholar 

  18. Jo JW, Jee BC, Suh CS, Kim SH. The beneficial effects of antifreeze proteins in the vitrification of immature mouse oocytes. PLoS One. 2012;7(5):e37043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hosten B, Abbara C, Cibert M, et al. Interleukin-2 treatment effect on imatinib pharmacokinetic, P-gp and BCRP expression in mice. Anticancer Drugs. 2010;21(2):193–201.

    Article  CAS  PubMed  Google Scholar 

  20. Kurita T, Cunha GR, Robboy SJ, Mills AA, Medina RT. Differential expression of p63 isoforms in female reproductive organs. Mech Dev. 2005;122(9):1043–1055.

    Article  CAS  PubMed  Google Scholar 

  21. Suh EK, Yang A, Kettenbach A, et al. p63 protects the female germ line during meiotic arrest. Nature. 2006;444(7119):624–628.

    Article  CAS  PubMed  Google Scholar 

  22. Barekati Z, Golkar-Narenji A, Totonchi M, Radpour R, Gourabi H. Effects of amifostine in combination with cyclophosphamide on female reproductive system. Reprod Sci. 2012;19(5): 539–546.

    Article  CAS  PubMed  Google Scholar 

  23. List AF, Heaton R, Glinsmann-Gibson B, Capizzi RL. Amifostine protects primitive hematopoietic progenitors against chemotherapy cytotoxicity. Semin Oncol. 1996;23(4 suppl 8):58–63.

    CAS  PubMed  Google Scholar 

  24. Sanders JE, Hawley J, Levy W, et al. Pregnancies following high-dose cyclophosphamide with or without high-dose busulfan or total-body irradiation and bone marrow transplantation. Blood. 1996;87(7):3045–3052.

    Article  CAS  PubMed  Google Scholar 

  25. Green DM, Fiorello A, Zevon MA, Hall B, Seigelstein N. Birth defects and childhood cancer in offspring of survivors of childhood cancer. Arch Pediatr Adolesc Med. 1997;151(4):379–383.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Byung Chul Jee MD or Shin Yong Moon MD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chun, E.K., Jee, B.C., Kim, J.Y. et al. Effect of Imatinib Coadministration on in Vitro Oocyte Acquisition and Subsequent Embryo Development in Cyclophosphamide-Treated Mice. Reprod. Sci. 21, 906–914 (2014). https://doi.org/10.1177/1933719113518986

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719113518986

Keywords

Navigation