Skip to main content
Log in

Impact of lag information on network inference

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Extracting useful information from data is a fundamental challenge across disciplines as diverse as climate, neuroscience, genetics, and ecology. In the era of “big data,” data is ubiquitous, but appropriate methods are needed for gaining reliable information from the data. In this work, we consider a complex system, composed by interacting units, and aim at inferring which elements influence each other, directly from the observed data. The only assumption about the structure of the system is that it can be modeled by a network composed by a set of N units connected with L un-weighted and un-directed links, however, the structure of the connections is not known. In this situation, the inference of the underlying network is usually done by using interdependency measures, computed from the output signals of the units. We show, using experimental data recorded from randomly coupled electronic Rössler chaotic oscillators, that the information of the lag times obtained from bivariate cross-correlation analysis can be useful to gain information about the real connectivity of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.A. Margolin, I. Nemenman, K. Basso et al., BMC Bioinform. 7, S7 (2006)

    Article  Google Scholar 

  2. M. Timme, Phys. Rev. Lett. 98, 224101 (2007)

    Article  ADS  Google Scholar 

  3. W.X. Wang, Y.C. Lai, C. Grebogi et al., Phys. Rev. X 1, 021021 (2011)

    Google Scholar 

  4. N. Rubido, A.C. Marti, E. Bianco-Martinez et al., New J. Phys. 16, 093010 (2014)

    Article  Google Scholar 

  5. E. Bianco-Martínez, N. Rubido, Ch.G. Antonopoulos, M.S. Baptista, Chaos 26, 043102 (2015)

    Article  ADS  Google Scholar 

  6. G. Tirabassi, R. Sevilla-Escoboza, J.M. Buldú, C. Masoller, Sci. Rep. 5, 10829 (2015)

    Article  ADS  Google Scholar 

  7. J.F. Donges, J. Heitzig, B. Beronov et al., Chaos 25, 113101 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  8. W. Wiedermann, J.F. Donges, J. Kurths et al., Phys. Rev. E 93, 042308 (2016)

    Article  ADS  Google Scholar 

  9. A. Pikovsky, Phys. Rev. E 93, 062313 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  10. R. Cestnik, M. Rosenblum, Phys. Rev. E 96, 012209 (2017)

    Article  ADS  Google Scholar 

  11. E.A. Martin, J. Hlinka, A. Meinke et al., Sci. Rep. 7, 7062 (2017)

    Article  ADS  Google Scholar 

  12. B.J. Stolz, H.A. Harrington, M.A. Porter, Chaos 27, 047410 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  13. J. Casadiego, N. Nitzan, S. Hallerberg et al., Nat. Commun. 8, 2192 (2017)

    Article  ADS  Google Scholar 

  14. E.S.C. Ching, H.C. Tam, Phys. Rev. E 95, 010301 (2017)

    Article  ADS  Google Scholar 

  15. L. Li, D.Xu, H. Peng et al., Sci. Rep. 7, 15036 (2017)

    Article  ADS  Google Scholar 

  16. V.M. Eguiluz, D.R. Chialvo, G.A. Cecchi et al., Phys. Rev. Lett. 94, 018102 (2005)

    Article  ADS  Google Scholar 

  17. B.T. Bullmore, O. Sporns, Nat. Rev. Neurosci. 10, 186 (2009)

    Article  Google Scholar 

  18. K. Lehnertz, G. Ansmann, S. Bialonski et al., Physica D 267, 7 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  19. K. Yamasaki, A. Gozolchiani, S. Havlin, Phys. Rev. Lett. 100, 228501 (2008)

    Article  ADS  Google Scholar 

  20. A.A. Tsonis, K.L. Swanson, Phys. Rev. Lett. 100, 228502 (2008)

    Article  ADS  Google Scholar 

  21. J.F. Donges, Y. Zou, N. Marwan, J. Kurths, Eur. Phys. J. Special Topics 174, 157 (2009)

    Article  ADS  Google Scholar 

  22. S. Bialonski, M.T. Horstmann, K. Lehnertz, Chaos 20, 013134 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  23. J.I. Deza, M. Barreiro, C. Masoller, Eur. Phys. J. Special Topics 222, 511 (2013)

    Article  ADS  Google Scholar 

  24. J.D. Olden, B.D. Neff, Marine Biol. 138, 1063 (2001)

    Article  Google Scholar 

  25. C. Curme, Lagged correlation networks, Doctoral dissertation, Boston University, 2015

  26. P. Damos, Stoch. Environ. Res. Risk Assess. 30, 1063 (2001)

    Google Scholar 

  27. A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A universal concept in nonlinear sciences (Cambridge University Press, Cambridge, 2001)

  28. R. Sevilla-Escoboza, J.M. Buldú, Data Brief 7, 1185 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Masoller.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubido, N., Masoller, C. Impact of lag information on network inference. Eur. Phys. J. Spec. Top. 227, 1243–1250 (2018). https://doi.org/10.1140/epjst/e2018-800070-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2018-800070-1

Navigation