Skip to main content
Log in

A hierarchical heteroclinic network

Controlling the time evolution along its paths

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We consider a heteroclinic network in the framework of winnerless competition of species. It consists of two levels of heteroclinic cycles. On the lower level, the heteroclinic cycle connects three saddles, each representing the survival of a single species; on the higher level, the cycle connects three such heteroclinic cycles, in which nine species are involved. We show how to tune the predation rates in order to generate the long time scales on the higher level from the shorter time scales on the lower level. Moreover, when we tune a single bifurcation parameter, first the motion along the lower and next along the higher-level heteroclinic cycles are replaced by a heteroclinic cycle between 3-species coexistence-fixed points and by a 9-species coexistence-fixed point, respectively. We also observe a similar impact of additive noise. Beyond its usual role of preventing the slowing-down of heteroclinic trajectories at small noise level, its increasing strength can replace the lower-level heteroclinic cycle by 3-species coexistence fixed-points, connected by an effective limit cycle, and for even stronger noise the trajectories converge to the 9-species coexistence-fixed point. The model has applications to systems in which slow oscillations modulate fast oscillations with sudden transitions between the temporary winners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.M. Postlethwaite, J.H.P. Dawes, Nonlinearity 18, 1477 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  2. M. Krupa, J. Nonlinear Sci. 7, 129 (1997)

    Google Scholar 

  3. H. Kori, Y. Kuramoto, Phys. Rev. E 63, 06214 (2001)

    Article  ADS  Google Scholar 

  4. J. Wordsworth, P. Ashwin, Phys. Rev. E 78, 066203 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  5. F. Schittler Neves, M. Timme, Phys. Rev. Lett. 109, 018701 (2012)

    Article  ADS  Google Scholar 

  6. V.S. Afraimovich, I. Tristan, R. Huerta, M.I. Rabinovich, Chaos 18, 043103 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  7. C. Hauert, G. Szabó, Am. J. Phys. 73, 405 (2005)

    Article  ADS  Google Scholar 

  8. G. Szabó, J. Vukov, A. Szolnoki, Phys. Rev. E 72, 047107 (2005)

    Article  ADS  Google Scholar 

  9. M.A. Nowak, K. Sigmund, Nature (London) 418, 138 (2002)

    Article  ADS  Google Scholar 

  10. Y. Tu, M.C. Cross, Phys. Rev. Lett. 69, 2515 (1992)

    Article  ADS  Google Scholar 

  11. S-B. Hsu, L-J. W. Roeger, J. Math. ANal. Appl. 360, 599 (2009)

    Article  Google Scholar 

  12. M.I, Rabinovich, V.S.Afraimovich, P. Varona, Dyn. Systems 25, 433 (2010)

    Google Scholar 

  13. M.I. Rabinovich, P. Varona, I. Tristan, V.S. Afraimovich, Front. Comp. Neurosci. 8, 1 (2004)

    Google Scholar 

  14. P. Ashwin, M. Field, Arch. Ration. Mech. Anal. 148, 107 (1999)

    Article  MathSciNet  Google Scholar 

  15. M.I. Rabinovich, R. Huerta, P. Varona, Phys. Rev. Lett. 96, 014101 (2006)

    Article  ADS  Google Scholar 

  16. M.I. Rabinovich, R. Huerta, P. Varona, V.S. Afraimovich, PLoS Comput. Biol. 4, e1000072 (2008)

    Google Scholar 

  17. M.A. Komarov, G.V. Osipov, J.A.K. Suykens, M.I. Rabinovich, Chaos 19, 015107 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  18. A. Szucs, R. Huerta, M. Rabinovich, A. Selverston, Neuron 61, 439 (2009)

    Article  Google Scholar 

  19. M.A. Komarov, G.V. Osipov, J.A.K. Suykens, Europhys. Lett. 86, 60006 (2009)

    Article  ADS  Google Scholar 

  20. M.A. Komarov, G.V. Osipov, J.A.K. Suykens, Europhys. Lett. 91, 20006 (2010)

    Article  ADS  Google Scholar 

  21. V.S. Afraimovich, M.I. Rabinovich, P. Varona, Int. J. Bifurcation Chaos 14, 1195 (2004)

    Article  ADS  Google Scholar 

  22. P. Ashwin, C.M. Postlethwaite, Physica D 265, 26 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  23. D. Hansel, G. Mato, C. Meunier, Phys. Rev. E 48, 3470 (1993)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maximilian Voit or Hildegard Meyer-Ortmanns.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voit, M., Meyer-Ortmanns, H. A hierarchical heteroclinic network. Eur. Phys. J. Spec. Top. 227, 1101–1115 (2018). https://doi.org/10.1140/epjst/e2018-800040-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2018-800040-x

Navigation