Skip to main content
Log in

Mixotrophy and intraguild predation – dynamic consequences of shifts between food web motifs

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Mixotrophy is ubiquitous in microbial communities of aquatic systems with many flagellates being able to use autotroph as well as heterotroph pathways for energy acquisition. The usage of one over the other pathway is associated with resource availability and the coupling of alternative pathways has strong implications for system stability. We investigated the impact of dominance of different energy pathways related to relative resource availability on system dynamics in the setting of a tritrophic food web motif. This motif consists of a mixotroph feeding on a purely autotroph species while competing for a shared resource. In addition, the autotroph can use an additional exclusive food source. By changing the relative abundance of shared vs. exclusive food source, we shift the food web motif from an intraguild predation motif to a food chain motif. We analyzed the dependence of system dynamics on absolute and relative resource availability. In general, the system exhibits a transition from stable to oscillatory dynamics with increasing nutrient availability. However, this transition occurs at a much lower nutrient level for the food chain in comparison to the intraguild predation motif. A similar transition is also observed with variations in the relative abundance of food sources for a range of nutrient levels. We expect this shift in food web motifs to occur frequently in microbial communities and therefore the results from our study are highly relevant for natural systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge University Press, 2001)

  2. K. Bar-Eli, J. Phys. Chem. 88, 3616 (1984)

    Article  Google Scholar 

  3. U. Feudel, Int. J. Bifurc. Chaos 18, 1607 (2008)

    Article  MathSciNet  Google Scholar 

  4. G. Ansmann, R. Karnatak, K. Lehnertz, U. Feudel, Phys. Rev. E 88, 052911 (2013)

    Article  ADS  Google Scholar 

  5. R. Albert, A.-L. Barabási, Phys. Rev. E 88, 052911 (2013)

    Article  ADS  Google Scholar 

  6. I. Farkas, I. Derényi, H. Jeong, Z.Nédac, Z.N. Oltvai, E. Ravaszc, A. Schubert, A.-L Barabási, T. Vicsek, Physica A 314, 25 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  7. G. Palla, A.-L. Barabási, T. Vicsek, Nature 446, 664 (2007)

    Article  ADS  Google Scholar 

  8. M.E.J. Newman, Networks: An Introduction (Oxford University Press, 2010)

  9. S. Bornholdt, H.G. Schuster (Eds.) Handbook of Graphs and Networks: From the Genome to the Internet (John Wiley & Sons, 2003)

  10. R. Albert, A.-L. Barabási, T. Vicsek, Rev. Mod. Phys. 74, 47 (2002)

    Article  ADS  Google Scholar 

  11. A. Masoudi-Nejad, F. Schreiber, Z.R.M. Kashani, IET Syst. Biol. 6, 164 (2012)

    Article  Google Scholar 

  12. R.M. May, Ecology 67, 1115 (1986)

    Article  Google Scholar 

  13. S.L. Pimm, J.H. Lawton, J.E. Cohen, Nature 250, 669 (1991)

    Article  ADS  Google Scholar 

  14. S.A. Levin, Ecology 73, 1943 (1992)

    Article  Google Scholar 

  15. S.H. Strogatz, Nature 410, 268 (2001)

    Article  ADS  Google Scholar 

  16. J.A. Dunne, R.J. Williams, N.D. Martinez, Proc. Natl. Acad. Sci. 99, 12917 (2002)

    Article  ADS  Google Scholar 

  17. S.L. Pimm, J.H. Lawton, Nature 275, 542 (1978)

    Article  ADS  Google Scholar 

  18. R.D. Holt, G.A. Polis, Am. Naturalist 149, 745 (1997)

    Article  Google Scholar 

  19. K. McCann, A. Hastings, Proc. Biol. Sci. 264, 1249 (1997)

    Article  Google Scholar 

  20. R. Karnatak, R. Ramaswamy, U. Feudel, Chaos, Solitons Fractals 68, 48 (2014)

    Article  ADS  Google Scholar 

  21. S. Rinaldi, O. De Feo, Ecol. Lett. 2, 6 (1999)

    Article  Google Scholar 

  22. P.V. Paulau, C. Feenders, B. Blasius, Sci. Rep. 5, 11926 (2015)

    Article  ADS  Google Scholar 

  23. B. Baiser, R. Elhesha, T. Kahveci, Oikos 125, 480 (2016)

    Article  Google Scholar 

  24. G.A. Polis, C.A. Myers, R.D. Holt, Annu. Rev. Ecol. Syst. 20, 1 (1989)

    Article  Google Scholar 

  25. A.C. Hammer, J.W. Pitchford, ICES J. Mar. Sci. 62, 833 (2005)

    Article  Google Scholar 

  26. J.M. Burkholder, P.M. Glibert, H.M. Skelton, Harmful Algae 8, 77 (2008)

    Article  Google Scholar 

  27. S. Wilken, J.M.H. Verspagen, S.N.-Wiezer, E. Van Donk, J. Huisman, Oikos 123, 423 (2014)

    Article  Google Scholar 

  28. C.S. Holling, The Canada Entomologist 91, 293 (1959)

    Article  Google Scholar 

  29. C.S. Holling, The Canada Entomologist 91, 385 (1959)

    Article  Google Scholar 

  30. G.D. Byrne, S. Thompson, http://www.radford.edu/thompson/vodef90web/index.html (2013 version)

  31. P.N. Brown, G.D. Byrne, A.C. Hindmarsh, SIAM J. Sci. Stat. Comput. 10, 1038 (1989)

    Article  Google Scholar 

  32. M. Rosenzweig, Science 171, 385 (1971)

    Article  ADS  Google Scholar 

  33. K. McCann, A. Hastings, G.R. Huxel, Nature 395, 794 (1998)

    Article  ADS  Google Scholar 

  34. D. Ritterskamp, C. Feenders, D. Bearup, B. Blasius, Theor. Ecol. 9, 501 (2016)

    Article  Google Scholar 

  35. S. Diehl, M. Feissel, Am. Naturalist 155, 200 (2000)

    Google Scholar 

  36. R.W. Sanders, J. Protozoology 38, 76 (1991)

    Article  Google Scholar 

  37. R.I. Jones, Freshwater Biol. 45, 219 (2000)

    Article  Google Scholar 

  38. B.A. Ward, M.J. Follows, Proc. Natl. Acad. Sci. 113, 2958 (2016)

    Article  ADS  Google Scholar 

  39. S. Wilken, J. Huisman, S.N.-Wiezer, E. Van, Donk, Ecol. Lett. 16, 225 (2013)

    Article  Google Scholar 

  40. N.N. Rabalais, R.E. Turner, R.J. Diaz, D. Justić, J. Mar. Sci. 66, 1528 (2009)

    Google Scholar 

  41. D.M. Andreson, P.M. Gilbert, J.M. Burkholder, Estuaries 25, 704 (2002)

    Article  Google Scholar 

  42. C.E Williamson, W. Dodds, T.K. Kratz, M.A. Palmer, Front. Ecol. Environ. 6, 247 (2008)

    Article  Google Scholar 

  43. F.R. Vasconcelos, S. Diehl, P. Rodríguez, P. Hedström, J. Karlsson, P. Byström, Ecology 97, 2580 (2016)

    Article  Google Scholar 

  44. K.E. Strock, J.E. Saros, S.J. Nelson, S.D. Birkel, J.S. Kahl, W.H. McDowell, Biogeochemistry 127, 353 (2016)

    Article  Google Scholar 

  45. L. Arvola, C. Äijälä, M. Leppäranta, Hydrobiologia 780, 37 (2016)

    Article  Google Scholar 

  46. A.P. Allen, J.F. Gillooly, J.H. Brown, Funct. Ecol. 19, 202 (2005)

    Article  Google Scholar 

  47. Á.L.-Urrutia, E. San Martin, R.P. Harris, X.Irigoien, Proc. Natl. Acad. Sci. 103, 8739 (2006)

    Article  ADS  Google Scholar 

  48. C.B. Müller, J. Brodeur, Biol. Control 25, 216 (2002)

    Article  Google Scholar 

  49. D.R. Hart, J. Theor. Biol. 218, 111 (2002)

    Article  Google Scholar 

  50. K.W. Crane, J.P. Grover, J. Theor. Biol. 262, 517 (2010)

    Article  Google Scholar 

  51. Climate change, impacts and vulnerability in Europe 2012, http://www.eea.europa.eu/publications/climate-impacts-and-vulnerability-2012/at_download/file

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rajat Karnatak or Sabine Wollrab.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karnatak, R., Wollrab, S. Mixotrophy and intraguild predation – dynamic consequences of shifts between food web motifs. Eur. Phys. J. Spec. Top. 226, 2135–2144 (2017). https://doi.org/10.1140/epjst/e2017-70033-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2017-70033-5

Navigation