Skip to main content

Advertisement

Log in

Effects of fertilizers used in agricultural fields on algal blooms

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The increasing occurrence of algal blooms and their negative ecological impacts have led to intensified monitoring activities. This needs the proper identification of the most responsible factor/factors for the bloom formation. However, in natural systems, algal blooms result from a combination of factors and from observation it is difficult to identify the most important one. In the present paper, using a mathematical model we compare the effects of three human induced factors (fertilizer input in agricultural field, eutrophication due to other sources than fertilizers, and overfishing) on the bloom dynamics and DO level. By applying a sophisticated sensitivity analysis technique, we found that the increasing use of fertilizers in agricultural field causes more rapid algal growth and decreases DO level much faster than eutrophication from other sources and overfishing. We also look at the mechanisms how fertilizer input rate affects the algal bloom dynamics and DO level. The model can be helpful for the policy makers in determining the influential factors responsible for the bloom formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Huang, R.L. Sass, W. Sun, W. Zhang, Y.Y. Sass, Reducing Nitrogen Fertilizer Use to Mitigate Negative Environmental Impact in China (James A. Baker III Institute for Public Rice Production, 2010)

  2. D.M. Anderson, J.M. Burkholder, W.P. Cochlan, P.M. Glibert, C.J. Gobler, C.A. Heil, R. Kudela, M.L. Parsons, J.E.J. Rensel, D.W. Townsend, V.L. Trainer, G.A. Vargo, Harmful Algae 8, 39 (2008)

    Article  Google Scholar 

  3. X. Gao, J.C. Ren, Z.X. Zong, Acta Scientiarum Naturalium 30, 461 (1994)

    Google Scholar 

  4. D.J. Conley, Hydrobiologia 410, 87 (1999)

    Article  Google Scholar 

  5. P.J.S. Franks, Limnol. Oceanography 42, 1273 (1997)

    Article  Google Scholar 

  6. D.W. Schindler, Can. J. Fish Aquat. Sci. 44, S6 (1987)

    Article  Google Scholar 

  7. J. Sole, E. Garcia-Ladona, M. Estrada, J. Mar. Syst. 62, 46 (2006)

    Article  ADS  Google Scholar 

  8. J. Truscott, J. Brindley, Phil. Trans. R. Soc. London 347, 703 (1994)

    Article  ADS  Google Scholar 

  9. J. Truscott, J. Brindley, Bull. Math. Biol. 56, 981 (1994)

    Article  Google Scholar 

  10. J. Truscott, J. Plankton Res. 17, 2207 (1995)

    Article  Google Scholar 

  11. S. Chakraborty, S. Chatterjee, E. Venturino, J. Chattopadhyay, J. Bio. Phys. 33, 271 (2007)

    Article  Google Scholar 

  12. R.D. Robarts, T. Zohary, New Zealand J. Mar. Freshwater Res. 21, 391 (1987)

    Article  Google Scholar 

  13. S. Chakraborty, U. Feudel, Theor. Ecol. 7, 221 (2014)

    Article  Google Scholar 

  14. H.W. Paerl, R.S. Fulton, P.H. Moisander, J. Dyble, Sci. World J. 1, 76 (2001)

    Article  Google Scholar 

  15. D.W. Schindler, Limnol. Oceanographic 51, 356 (2006)

    Article  Google Scholar 

  16. A.K. Misra, Nonlinear Anal. Model. Control 12, 511 (2007)

    MathSciNet  Google Scholar 

  17. A.K. Misra, P. Chandra, V. Raghavendra, Adv. Water Res. 34, 1232 (2011)

    Article  Google Scholar 

  18. J.B. Shukla, A.K. Misra, P. Chandra, Nonlinear Anal. RWA. 9, 1851 (2008)

    Article  Google Scholar 

  19. A.K. Misra, P.K. Tiwari, E. Venturino, J. Biol. Phys. 42, 147 (2016)

    Article  Google Scholar 

  20. P.A. Glibert, J.I. Allen, Y. Artioli, et al., Global Change Biol. 20, 3845 (2014)

    Article  Google Scholar 

  21. P.A. Soranno, S.L. Hubler, S.R. Carpenter, R.C. Lathrop, Ecological Appl. 6, 865 (1996)

    Article  Google Scholar 

  22. J.E. Cloern, Mar. Ecol. Prog. Ser. 210, 223 (2001)

    Article  Google Scholar 

  23. P.J.T.M.van Puijenbroek, J.H. Janse, J.M. Knoop, Ecol. Model. 174, 127 (2004)

    Article  Google Scholar 

  24. H.I. Freedman, J.W.H. So, Math. Bio. 76, 69 (1985)

    Article  Google Scholar 

  25. S. Chakraborty, S. Roy, J. Chattopadhyay, Ecol. Model. 213, 191 (2008)

    Article  Google Scholar 

  26. M. Eslami, Theory of Sensitivity in Dynamic Systems (Springer-Verlag, Heidelberg, 1994)

  27. M. Kleiber, H. Antunez, T.D. Hien, P. Kowalczyk, Parameter Sensitivity in Nonlinear Mechanics: Theory and Finite Element Computations (John Wiley & Sons, New York, 1997)

  28. R.P. Dickinson, R.J. Gelinas, J. Comput. Phys. 21, 123 (1976)

    Article  ADS  Google Scholar 

  29. A. Varma, M. Morbidelli, H. Wu, Parametric Sensitivity in Chemical Systems (Cambridge University Press, Cambridge, 1999)

  30. H.T. Banks, D.M. Bortz, J. Math. Biol. 50, 607 (2005)

    Article  MathSciNet  Google Scholar 

  31. D.F. Boesch, D.M. Anderson, R.A. Horner, S.E. Shumway, P.A. Tester, T.E. Whitledge, Harmful Algal Blooms in Coastal Waters: Options for Prevention, Control and Mitigation, NOAA Coastal Ocean Program, Decision Anal. Ser. (1997), Vol. 10

  32. J.M. Beman, K.R. Arrigo, P.A. Matson, Nature 434, 211 (2005)

    Article  ADS  Google Scholar 

  33. C.W.Y. Lam, K.C. Ho, Red tides in Tolo Harbour, Hong Kong, in Red Tides: Biology, Environmental Science and Toxicology, edited by T. Okaichi, D.M. Anderson & T. Nemoto (Elsevier Science Publishing Co., New York, 1989), pp. 49–52

  34. B.K. Eriksson, Does overfishing promote algal blooms? http://www.europarl.europa.eu/studies (2011)

  35. R.Z. Diaz, R. Rosenberg, Science 321, 926 (2008)

    Article  ADS  Google Scholar 

  36. C. Kemker, Fondriest environmental, Inc. 19 Nov. http://www.fondriest.com/environmental-measurements/parameters/water-quality/dissolved-oxygen. (2013)

  37. N.N. Rabalais, R.J. Diaz, L.A. Levin, R.E. Turner, D. Glibert, J. Zhang, Biogeosciences 7, 585 (2010)

    Article  ADS  Google Scholar 

  38. R. Diaz, N.N. Rabalais, D.L. Breitburg, https://www.oecd.org/tad/sustainable-agriculture/49841630.pdf (2012)

  39. C.B. Lopez, Q. Dortch, E.B. Jewett, D. Garrison, Interagency working group on harmful algal blooms, hypoxia, and human health of the joint subcommittee on ocean science and technology, http://ocean.ceq.gov/about/sup_jsost_iwgs.html (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhendu Chakraborty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, S., Tiwari, P.K., Sasmal, S.K. et al. Effects of fertilizers used in agricultural fields on algal blooms. Eur. Phys. J. Spec. Top. 226, 2119–2133 (2017). https://doi.org/10.1140/epjst/e2017-70031-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2017-70031-7

Navigation