Skip to main content

Advertisement

Log in

Local vs. global redundancy – trade-offs between resilience against cascading failures and frequency stability

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

When designing or extending electricity grids, both frequency stability and resilience against cascading failures have to be considered amongst other aspects of energy security and economics such as construction costs due to total line length. Here, we compare an improved simulation model for cascading failures with state-of-the-art simulation models for short-term grid dynamics. Random ensembles of realistic power grid topologies are generated using a recent model that allows for a tuning of global vs local redundancy. The former can be measured by the algebraic connectivity of the network, whereas the latter can be measured by the networks transitivity. We show that, while frequency stability of an electricity grid benefits from a global form of redundancy, resilience against cascading failures rather requires a more local form of redundancy and further analyse the corresponding trade-off.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 50hertz, http://www.50hertz.com/Netzlast/Karte/index.html (accessed: 08.06.2015)

  2. S.V. Buldyrev, et al., Nature, 464, 1025 (2010)

    Article  ADS  Google Scholar 

  3. B.A. Carreras, et al., Chaos 12, 985 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  4. P. Crucitti, V. Latora, M. Marchiori, Phys. Rev. E 69, 045104 (2004)

    Article  ADS  Google Scholar 

  5. T. Dewenter, A.K. Hartmann, New J. Phys. 17, 015005 (2015)

    Article  ADS  Google Scholar 

  6. J.F. Donges, Ph.D. thesis, Humboldt University, Berlin, Germany, 2012

  7. F. Dörfler, F. Bullo, SIAM J. Control and Optimization 50, 1616 (2012)

    Article  MathSciNet  Google Scholar 

  8. S.C. Srivastava, A. Velayutham, A.S. Bakshi, http://www.cea.nic.in/reports/articles/god/grid_disturbance_report.pdf (accessed: 27.04.2015)

  9. Union of the Electricity Industry – EURELECTRIC, http://www.eurelectric.org/media/38999/eu_islands_-_towards_a_sustainable_energy_future_-_eurelectric_report_final-2012-190-0001-01-e.pdf (accessed 10.06.2015)

  10. G. Filatrella, A.H. Nielsen, N.F. Pedersen, Eur. Phys. J. B 61, 485 (2008)

    Article  ADS  Google Scholar 

  11. C. Folke, Global Environmental Change 16, 253 (2006)

    Article  Google Scholar 

  12. A. Gajduk, M. Todorovski, L. Kocarev, The Euro. Phys. J. Spec. Top. 223, 2387 (2014)

    Article  Google Scholar 

  13. J. Gao, et al., Phys. Rev. Lett. 107, 195701 (2011)

    Article  ADS  Google Scholar 

  14. J.J. Grainger, W.D. Stevenson, Vol. 31 (New York: McGraw-Hill, 1994)

  15. F. Hellmann, et al., arXiv preprint [arXiv:1506.01257] (2015)

  16. C.S. Holling, Ann. Rev. Ecology and Systematics 4, 1 (1973)

    Article  Google Scholar 

  17. P. Holme, et al., Phys. Rev. E 65, 056109 (2002)

    Article  ADS  Google Scholar 

  18. Intergovernmental Panel on Climate Change, http://www.ipcc.ch/pdf/assessment-report/ar5/syr/SYR_AR5_FINAL_full.pdf (accessed: 27.04.2015)

  19. J.C. Kile, et al., Prehospital, Florian, and disaster medicine 20, 93 (2005)

    Google Scholar 

  20. J. Machowski, J. Bialek, J. Bumby (John Wiley & Sons, 2011)

  21. P.J. Menck, et al., Nat. Phys. 9, 89 (2013)

    Article  Google Scholar 

  22. P.J. Menck, et al., Nat. Commu. 5, 3969 (2013)

    Google Scholar 

  23. A.E. Motter, Y.-C. Lai, Phys. Rev. E 66, 065102 (2002)

    Article  ADS  Google Scholar 

  24. D.E. Newman, et al., IEEE Transactions on 60, 134 (2011)

    Google Scholar 

  25. T. Nishikawa, A.E. Motter, New J. Phys. 17, 15012 (2015)

    Article  Google Scholar 

  26. Renewable Energy Policy Network for the 21st Century, http://www.ren21.net/Portals/0/documents/Resources/GSR/2014/GSR2014_full%20report_low%20res.pdf (accessed: 27.04.2015)

  27. M. Rohden, et al., Phys. Rev. Lett. 109, 064101 (2012)

    Article  ADS  Google Scholar 

  28. K. Schmietendorf, et al., Eur. Phys. J. Special Topics 223, 2577 (2014)

    Article  ADS  Google Scholar 

  29. P. Schultz, J. Heitzig, J. Kurths, Eur. Phys. J. Special Topics 223, 2593 (2014)

    Article  ADS  Google Scholar 

  30. P. Schultz, J. Heitzig, J. Kurths, New J. Phys. 16, 125001 (2014)

    Article  ADS  Google Scholar 

  31. I. Simonsen, et al., Phys. Rev. Lett. 100, 218701 (2008)

    Article  ADS  Google Scholar 

  32. R.V. Solé, et al., Phys. Rev. E 77, 026102 (2008)

    Article  ADS  Google Scholar 

  33. Union for the Co-ordination of Transmission of Electricity, http://www.entsoe.eu/fileadmin/user_upload/_library/publications/ce/otherreports/Final-Report-20070130.pdf (accessed: 27.04.2015)

  34. D. Witthaut, M. Timme, New J. Phys. 14, 083036 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Plietzsch, P. Schultz or J. Heitzig.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plietzsch, A., Schultz, P., Heitzig, J. et al. Local vs. global redundancy – trade-offs between resilience against cascading failures and frequency stability. Eur. Phys. J. Spec. Top. 225, 551–568 (2016). https://doi.org/10.1140/epjst/e2015-50137-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2015-50137-4

Navigation