Skip to main content
Log in

Numerical simulation of particle-laden droplet evaporation with the Marangoni effect

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

A comprehensive numerical method for analysis of the evaporation of a particle-laden microdroplet is developed including the effects of heat and mass transfer, phase change, dynamic contact angles, Marangoni force, and particle concentration. A level-set method, which can easily handle the liquid-gas interface with change in topology, is employed to solve the conservation equations of mass, momentum and energy in the liquid and gas phases, vapor concentration in the gas phase, and particle concentration in the liquid phase with sharp-interface numerical techniques for the boundary conditions at the interface. The numerical method is applied to microdroplet evaporation on a solid surface to investigate the Marangoni effect on the droplet evaporation and particle distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Nature 389, 827 (1997)

    Article  ADS  Google Scholar 

  2. B.J. Fischer, Langmuir 18, 60 (2002)

    Article  Google Scholar 

  3. E. Widjaja, M.T. Harris, AICHE J. 54, 2250 (2008)

    Article  Google Scholar 

  4. R. Bhardwaj, X. Fang, D. Attinger, New J. Phys. 11, 075020 (2009)

    Article  ADS  Google Scholar 

  5. K.L. Maki, S. Kumar, Langmuir 27, 11347 (2011)

    Article  Google Scholar 

  6. M. Fujita, O. Koike, Y. Yamaguchi, J. Comput. Phys. 281, 421 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  7. G. Son, J. Mech. Sci. Technol. 24, 991 (2009)

    Article  MathSciNet  Google Scholar 

  8. G. Son, J. Heat Transfer 134, 101502 (2012)

    Article  Google Scholar 

  9. G. Son, Int. Commun. Heat Mass Transfer 58, 156 (2014)

    Article  Google Scholar 

  10. J. Lee, G. Son, Numer. Heat Transfer B 67, 25 (2015)

    Article  ADS  Google Scholar 

  11. V. Babin, R. Holyst, J. Phys. Chem. B 109, 11367 (2005)

    Article  Google Scholar 

  12. R. Holyst, M. Litniewski, D. Jakubczyk, M. Zientara, M. Wozniak, Soft Matter 9, 7766 (2013)

    Article  ADS  Google Scholar 

  13. R. Holyst, M. Litniewski, D. Jakubczyk, K. Kolwas, M. Kolwas, K. Kowalski, S. Migacz, S. Palesa, M. Zientara, Rep. Prog. Phys. 76, 034601 (2013)

    Article  ADS  Google Scholar 

  14. M. Kang, R.P. Fedkiw, X.-D. Liu, J. Sci. Comput. 15, 323 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. D.Q. Nguyen, R.P. Fedkiw, M. Kang, J. Comput. Phys. 172, 71 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. F. Gibou, R.P. Fedkiw, L.T Cheng, M. Kang, J. Comput. Phys. 176, 205 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. I.M. Krieger, Adv. Colloid Interface Sci. 3, 111 (1972)

    Article  Google Scholar 

  18. A.A. Potanin, J. Colloid Interface Sci. 157, 399 (1993)

    Article  Google Scholar 

  19. L. Daubersies, J.-B. Salmon, Phys. Rev. E 84, 031406 (2011)

    Article  ADS  Google Scholar 

  20. S.S.L. Peppin, J.A.W. Elliott, M.G. Worster, J. Fluid Mech. 554, 147 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. G.P. Sasmal, J.I. Hochstein, J. Fluids Eng. 116, 577 (1994)

    Article  Google Scholar 

  22. J.-J. Xu, W. Ren, J. Comput. Phys. 263, 71 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  23. M. Sussman, M. Ohta, SIAM J. Sci. Comput. 31, 2447 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. M. Sussman, Int. J. Numer. Meth. Fluids 68, 1343 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. J. Fukai, Y. Shiiba, T. Yamamoto, O Miyatake, O. Poulikakos, C.M. Megaridis, Z. Zhao, Phys. Fluids 7, 236 (1995)

    Article  ADS  Google Scholar 

  26. F.I. ThomasJr., E.L. Peter, Steam and Gas Tables with Computer Equations (Academic Press, 1984)

  27. T. Lim, S. Han, J. Chung, J.T. Chung, S. Ko, C.P. Grigoropoulos, Int. J. Heat Mass Transfer 52, 431 (2009)

    Article  Google Scholar 

  28. H. Hu, R.G. Larson, Int. J. Phys. Chem. B 110, 7090 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Son.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Son, G. Numerical simulation of particle-laden droplet evaporation with the Marangoni effect. Eur. Phys. J. Spec. Top. 224, 401–413 (2015). https://doi.org/10.1140/epjst/e2015-02369-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2015-02369-y

Keywords

Navigation