Skip to main content
Log in

Effect of contact angle hysteresis on breakage of a liquid bridge

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In this paper, the importance of considering contact angle hysteresis (CAH) during the process of stretching and breaking a liquid bridge between two solid surfaces is addressed. We clearly show that due to the pinning of contact line at the end of the stretching stage, the contact angle between liquid bridge and surfaces cannot be simply assumed to have a constant value (e.g. receding contact angle, θ r ). Simulation results for stretching a liquid bridge with and without CAH, showed that the contact line pinning can lead to breakage at a larger surface separation and smaller value of pull-off force (F p ). A systematic study about the effect of CAH and contact line pinning on the value of F p is provided. It is found that when one of the surfaces has a θ r larger than 90, F p decreases with the increase of θ r on either surface delimiting the bridge. For the cases where θ r of both surfaces are smaller than 90, significantly smaller F p is seen when contact line pinning occurs on both surfaces, as compared to F p when contact line pinning occurs only on one surface. This smaller F p is caused by more curved profile and later breakage of liquid bridge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Similar content being viewed by others

References

  1. P.G. de Gennes, Rev. Mod. Phys. 57, 827 (1985)

    Article  ADS  Google Scholar 

  2. T. Young, Philos. Trans. R. Soc. London 95, 65 (1805)

    Article  Google Scholar 

  3. C.N.C. Lam, R. Wu, D. Li, M.L. Hair, A.W. Neumann, Adv. Colloid Interface Sci. 96, 169 (2002)

    Article  Google Scholar 

  4. R.H. Dettre, R.E. Johnson Jr. Adv. Chem. Ser. 43, 112 (1964)

    Article  Google Scholar 

  5. P. Roura, J. Fort, Phy. Rev. E 64, 011601 (2001)

    Article  ADS  Google Scholar 

  6. E. Pierce, F.J. Carmona, A. Amirfazli, Colloids Surf. A 323, 73 (2008)

    Article  Google Scholar 

  7. W. Konrad, M. Ebner, C. Traiser, A. Roth-Nebelsick, Pure Appl. Geophys. 169, 835 (2012)

    Article  ADS  Google Scholar 

  8. D. Qurere, Annual Rev. Mater. Res. 38, 71 (2008)

    Article  ADS  Google Scholar 

  9. J. Wu, J. Xia, W. Lei, Bao-ping Wang, Scientific Reports 3, 3268 (2013)

    ADS  Google Scholar 

  10. L.W. Schwartz, Langmuir 14, 3440 (1998)

    Article  Google Scholar 

  11. A.J.B. Milne, A. Amirfazli, Langmuir 25(24), 14155 (2009)

    Article  Google Scholar 

  12. A.V. Chadov, E.D. Yakhnin, Kolloidn. Zh. 41, 817 (1979)

    Google Scholar 

  13. S. Dodds, M.S. Carvalho, S. Kumar, Phy. Fluids 21, 092103 (2009)

    Article  ADS  Google Scholar 

  14. H.W. Kang, H.J. Sung, T.-M. Lee, D.-S. Kim, C.-J. Kim, J. Micromech. Microeng. 19, 015025 (2009)

    Article  ADS  Google Scholar 

  15. E. Cheung, M. Sitti, J. Adhesion Sci. Tech. 22, 569 (2008)

    Article  Google Scholar 

  16. M.A. Fortes, J. Colloid Interface Sci. 88, 2 (1982)

    Google Scholar 

  17. H. Chen, A. Amirfazli, T. Tang, Langmuir 29, 3310 (2013)

    Article  Google Scholar 

  18. E.J. De Souza, L. Gao, T.J. McCarthy, E. Arzt, A.J. Crosby, Langmuir 24(4), 1391 (2008)

    Article  Google Scholar 

  19. S.-J. Hong, T.-H. Chou, S.H. Chan, Y.-J. Sheng, H.-K. Tsao, Langmuir 28, 5606 (2012)

    Article  Google Scholar 

  20. B. Samuel, H. Zhao, K.-Y. Law, J. Phys. Chem. C 115, 14852 (2011)

    Article  Google Scholar 

  21. H. Chen, T. Tang, A. Amirfazli, Soft Matt. 10, 2503 (2014)

    Article  ADS  Google Scholar 

  22. H. Chen, T. Tang, A. Amirfazli, Colloids Surf. A 408, 17 (2012)

    Article  Google Scholar 

  23. J. Qian, H. Gao, Acta Biomater. 2, 51 (2006)

    Article  Google Scholar 

  24. B.N.J. Persson, J. Phys.: Condens. Matt. 19, 376110 (2007)

    Google Scholar 

  25. L.V. Slobozhanin, J.I.D. Alexander, Phys. Fluids 10, 2473 (1998)

    Article  ADS  Google Scholar 

  26. J.M. Perales, J. Meseguer, J. Crystal Growth 110, 855 (1991)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. Tang or A. Amirfazli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Tang, T. & Amirfazli, A. Effect of contact angle hysteresis on breakage of a liquid bridge. Eur. Phys. J. Spec. Top. 224, 277–288 (2015). https://doi.org/10.1140/epjst/e2015-02359-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2015-02359-1

Keywords

Navigation