Skip to main content
Log in

Mechanical stimulation of cells with electroactive polymer-based soft actuators

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Mechanical stimulation has an important effect on cell morphology and functions. Thus, it is of great research value to develop equipment and technologies for mechanical stimulation of cells. Electroactive polymers (EAPs) are a popular class of soft smart materials developed in the last 30 years. Compared to some traditional smart materials, EAPs have remarkable advantages such as high flexibility, large deformation, light weight, and fast response. Hence, EAP-based soft actuators have been widely used in biomedicine, biomimetic robots, flexible operating instruments, etc. Besides, they are also emerging in the field of biomechanics. In this review, we introduce the primary characteristics and operating mechanism of EAP-based actuators, and summarize a series of representative advances in EAP-based mechanical stimulation of cells and broadly discuss some other biomedical applications of EAP-based actuators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

No data associated in the manuscript.

References

  1. C. Yang et al., Mechanical dynamics in live cells and fluorescence-based force/tension sensors. Biochim. Biophys. Acta 1853, 1889–1904 (2015). https://doi.org/10.1016/j.bbamcr.2015.05.001

    Article  Google Scholar 

  2. W. Zhang, G. Huang, F. Xu, Engineering biomaterials and approaches for mechanical stretching of cells in three dimensions. Front. Bioeng. Biotechnol. 8, 589590 (2020). https://doi.org/10.3389/fbioe.2020.589590

    Article  Google Scholar 

  3. J. Luis Alonso, H.W. Goldmann, Cellular mechanotransduction. AIMS Biophysics 3, 50–62 (2016). https://doi.org/10.3934/biophy.2016.1.50

    Article  Google Scholar 

  4. B.D. Hoffman, C. Grashoff, M.A. Schwartz, Dynamic molecular processes mediate cellular mechanotransduction. Nature 475, 316–323 (2011). https://doi.org/10.1038/nature10316

    Article  Google Scholar 

  5. D.E. Ingber, Cellular mechanotransduction: putting all the pieces together again. FASEB J. 20, 811–827 (2006). https://doi.org/10.1096/fj.05-5424rev

    Article  Google Scholar 

  6. M. Elsaadany, M. Harris, E. Yildirim-Ayan, Design and validation of equiaxial mechanical strain platform, EQUicycler, for 3D tissue engineered constructs. Biomed. Res. Int. (2017). https://doi.org/10.1155/2017/3609703

    Article  Google Scholar 

  7. T.M. Maul, D.W. Chew, A. Nieponice, D.A. Vorp, Mechanical stimuli differentially control stem cell behavior: morphology, proliferation, and differentiation. Biomech. Model. Mechanobiol. 10, 939–953 (2011). https://doi.org/10.1007/s10237-010-0285-8

    Article  Google Scholar 

  8. S.A. Gudipaty et al., Mechanical stretch triggers rapid epithelial cell division through Piezo1. Nature 543, 118–121 (2017). https://doi.org/10.1038/nature21407

    Article  ADS  Google Scholar 

  9. J.S. Park et al., Differential effects of equiaxial and uniaxial strain on mesenchymal stem cells. Biotechnol. Bioeng. 88, 359–368 (2004). https://doi.org/10.1002/bit.20250

    Article  Google Scholar 

  10. A. Aryaei, A.C. Jayasuriya, The effect of oscillatory mechanical stimulation on osteoblast attachment and proliferation. Mater. Sci. Eng. C Mater. Biol. Appl. 52, 129–134 (2015). https://doi.org/10.1016/j.msec.2015.03.024

    Article  Google Scholar 

  11. Y. Gao et al., Three dimensional and homogenous single cell cyclic stretch within a magnetic micropillar array (mMPA) for a cell proliferation study. ACS Biomater. Sci. Eng. 2, 65–72 (2015). https://doi.org/10.1021/acsbiomaterials.5b00381

    Article  Google Scholar 

  12. R.S. Cargill 2nd., L.E. Thibault, Acute alterations in [Ca2+]i in NG108-15 cells subjected to high strain rate deformation and chemical hypoxia: an in vitro model for neural trauma. J. Neurotrauma 13, 395–407 (1996). https://doi.org/10.1089/neu.1996.13.395

    Article  Google Scholar 

  13. E.F. Ellis, J.S. McKinney, K.A. Willoughby, S. Liang, J.T. Povlishock, A new model for rapid stretch-induced injury of cells in culture: characterization of the model using astrocytes. J. Neurotrauma 12, 325–339 (1995). https://doi.org/10.1089/neu.1995.12.325

    Article  Google Scholar 

  14. B. Morrison 3rd., H.L. Cater, C.D. Benham, L.E. Sundstrom, An in vitro model of traumatic brain injury utilising two-dimensional stretch of organotypic hippocampal slice cultures. J. Neurosci. Methods 150, 192–201 (2006). https://doi.org/10.1016/j.jneumeth.2005.06.014

    Article  Google Scholar 

  15. B.J. Pfister, T.P. Weihs, M. Betenbaugh, G. Bao, An in vitro uniaxial stretch model for axonal injury. Ann. Biomed. Eng. 31, 589–598 (2003). https://doi.org/10.1114/1.1566445

    Article  Google Scholar 

  16. A. Buccarello, M. Azzarito, F. Michoud, S.P. Lacour, J.P. Kucera, Uniaxial strain of cultured mouse and rat cardiomyocyte strands slows conduction more when its axis is parallel to impulse propagation than when it is perpendicular. Acta Physiol (oxf) 223, e13026 (2018). https://doi.org/10.1111/apha.13026

    Article  Google Scholar 

  17. S. Akbari, H.R. Shea, An array of 100μm×100μm dielectric elastomer actuators with 80% strain for tissue engineering applications. Sens. Actuators A 186, 236–241 (2012). https://doi.org/10.1016/j.sna.2012.01.030

    Article  Google Scholar 

  18. H.J. Kim, D. Huh, G. Hamilton, D.E. Ingber, Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 12, 2165–2174 (2012). https://doi.org/10.1039/c2lc40074j

    Article  Google Scholar 

  19. A. Pavesi et al., Controlled electromechanical cell stimulation on-a-chip. Sci. Rep. 5, 11800 (2015). https://doi.org/10.1038/srep11800

    Article  ADS  Google Scholar 

  20. D.R. Gossett et al., Hydrodynamic stretching of single cells for large population mechanical phenotyping. Proc. Natl. Acad. Sci. U. S. A. 109, 7630–7635 (2012). https://doi.org/10.1073/pnas.1200107109

    Article  ADS  Google Scholar 

  21. V. Lulevich, T. Zink, H.Y. Chen, F.T. Liu, G.Y. Liu, Cell mechanics using atomic force microscopy-based single-cell compression. Langmuir ACS J. Surf. Colloids 22, 8151–8155 (2006). https://doi.org/10.1021/la060561p

    Article  Google Scholar 

  22. C.A. Lamontagne, C.M. Cuerrier, M. Grandbois, AFM as a tool to probe and manipulate cellular processes. Pflugers Arch 456, 61–70 (2008). https://doi.org/10.1007/s00424-007-0414-0

    Article  Google Scholar 

  23. S. Hénon, G. Lenormand, A. Richert, F. Gallet, A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers. Biophys. J. 76, 1145–1151 (1999). https://doi.org/10.1016/s0006-3495(99)77279-6

    Article  Google Scholar 

  24. D.B. Serrell, T.L. Oreskovic, A.J. Slifka, R.L. Mahajan, D.S. Finch, A uniaxial bioMEMS device for quantitative force-displacement measurements. Biomed. Microdevices 9, 267–275 (2007). https://doi.org/10.1007/s10544-006-9032-4

    Article  Google Scholar 

  25. D. Chen, R.D. Hyldahl, R.C. Hayward, Creased hydrogels as active platforms for mechanical deformation of cultured cells. Lab Chip 15, 1160–1167 (2015). https://doi.org/10.1039/c4lc01296h

    Article  Google Scholar 

  26. F. Khademolhosseini, C.C. Liu, C.J. Lim, M. Chiao, Magnetically actuated microstructured surfaces can actively modify cell migration behaviour. Biomed. Microdevices 18, 13 (2016). https://doi.org/10.1007/s10544-016-0033-7

    Article  Google Scholar 

  27. C.M. Bidan et al., Magneto-active substrates for local mechanical stimulation of living cells. Sci. Rep. 8, 1464 (2018). https://doi.org/10.1038/s41598-018-19804-1

    Article  ADS  Google Scholar 

  28. W.H. Kang et al., Alterations in hippocampal network activity after in vitro traumatic brain injury. J. Neurotrauma 32, 1011–1019 (2015). https://doi.org/10.1089/neu.2014.3667

    Article  Google Scholar 

  29. M.R. Wuttig, et al., In Smart structures and materials 1998: Smart materials technologies. 4–5 March 1998, San Diego, California

  30. Q. He et al., The square rod-shaped ionic polymer-metal composite and its application in interventional surgical guide device. Int. J. Smart Nano Mater. 11, 159–172 (2020). https://doi.org/10.1080/19475411.2020.1783020

    Article  ADS  Google Scholar 

  31. H.R. Cheong, N.T. Nguyen, M.K. Khaw, B.Y. Teoh, P.S. Chee, Wirelessly activated device with an integrated ionic polymer metal composite (IPMC) cantilever valve for targeted drug delivery. Lab Chip 18, 3207–3215 (2018). https://doi.org/10.1039/c8lc00776d

    Article  Google Scholar 

  32. F.A. Mohd Ghazali, C.K. Mah, A. AbuZaiter, P.S. Chee, M.S. Mohamed Ali, Soft dielectric elastomer actuator micropump. Sens. Actuators A Phys. 263, 276–284 (2017). https://doi.org/10.1016/j.sna.2017.06.018

    Article  Google Scholar 

  33. D. Cao, J.G. Martinez, E.S. Hara, E.W.H. Jager, Biohybrid variable-stiffness soft actuators that self-create bone. Adv. Mater. 34, e2107345 (2022). https://doi.org/10.1002/adma.202107345

    Article  Google Scholar 

  34. F. Wang, Q. Li, J.O. Park, S. Zheng, E. Choi, Ultralow voltage high-performance bioartificial muscles based on ionically crosslinked polypyrrole-coated functional carboxylated bacterial cellulose for soft robots. Adv. Funct. Mater. (2020). https://doi.org/10.1002/adfm.202007749

    Article  Google Scholar 

  35. S. Umrao et al., MXene artificial muscles based on ionically cross-linked Ti3C2Tx electrode for kinetic soft robotics. Sci. Robot. 4, eaaw7797 (2019). https://doi.org/10.1126/scirobotics.aaw7797

    Article  Google Scholar 

  36. V. Palmre et al., An IPMC-enabled bio-inspired bending/twisting fin for underwater applications. Smart Mater. Struct. 22, 014003 (2012). https://doi.org/10.1088/0964-1726/22/1/014003

    Article  ADS  Google Scholar 

  37. D. Cao, J.G. Martinez, E.S. Hara, E.W.H. Jager, Variable stiffness actuators with covalently attached nanofragments that induce mineralization. Adv. Mater. Technol. (2023). https://doi.org/10.1002/admt.202201651

    Article  Google Scholar 

  38. M. Mahato et al., CTF-based soft touch actuator for playing electronic piano. Nat. Commun. 11, 5358 (2020). https://doi.org/10.1038/s41467-020-19180-3

    Article  ADS  Google Scholar 

  39. S. Roy et al., collectively exhaustive electrodes based on covalent organic framework and antagonistic co-doping for electroactive ionic artificial muscles. Adv. Funct. Mater. 29, 1900161 (2019). https://doi.org/10.1002/adfm.201900161

    Article  Google Scholar 

  40. G. Wu et al., High-performance hierarchical black-phosphorous-based soft electrochemical actuators in bioinspired applications. Adv. Mater. 31, 1806492 (2019). https://doi.org/10.1002/adma.201806492

    Article  Google Scholar 

  41. D. Mojena-Medina et al., Design, implementation, and validation of a piezoelectric device to study the effects of dynamic mechanical stimulation on cell proliferation, migration and morphology. Sensors (Basel) (2020). https://doi.org/10.3390/s20072155

    Article  Google Scholar 

  42. J. Costa et al., Bioreactor with electrically deformable curved membranes for mechanical stimulation of cell cultures. Front Bioeng. Biotechnol. 8, 22 (2020). https://doi.org/10.3389/fbioe.2020.00022

    Article  Google Scholar 

  43. A. Poulin et al., An ultra-fast mechanically active cell culture substrate. Sci. Rep. 8, 9895 (2018). https://doi.org/10.1038/s41598-018-27915-y

    Article  ADS  Google Scholar 

  44. K. Svennersten, M. Berggren, A. Richter-Dahlfors, E.W. Jager, Mechanical stimulation of epithelial cells using polypyrrole microactuators. Lab Chip 11, 3287–3293 (2011). https://doi.org/10.1039/c1lc20436j

    Article  Google Scholar 

  45. C. Keplinger, T. Li, R. Baumgartner, Z. Suo, S. Bauer, Harnessing snap-through instability in soft dielectrics to achieve giant voltage-triggered deformation. Soft Matter 8, 285–288 (2012). https://doi.org/10.1039/C1SM06736B

    Article  ADS  Google Scholar 

  46. J. Huang et al., Giant, voltage-actuated deformation of a dielectric elastomer under dead load. Appl. Phys. Lett. (2012). https://doi.org/10.1063/1.3680591

    Article  Google Scholar 

  47. R.E. Pelrine, R.D. Kornbluh, J.P. Joseph, Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sens. Actuators A 64, 77–85 (1998). https://doi.org/10.1016/S0924-4247(97)01657-9

    Article  Google Scholar 

  48. R. Kornbluh, R. Pelrine, in Dielectric Elastomers as Electromechanical Transducers. ed. by F. Carpi et al. (Elsevier, 2008), pp.33–42

    Chapter  Google Scholar 

  49. Z.-X. Wang, W.-Q. Liao, Giant electromechanical effects in polymers. Science 375, 1353–1354 (2022). https://doi.org/10.1126/science.abn7440

    Article  ADS  Google Scholar 

  50. T. Soulestin, V. Ladmiral, F.D. Dos Santos, B. Améduri, Vinylidene fluoride- and trifluoroethylene-containing fluorinated electroactive copolymers. How does chemistry impact properties? Progress Polym. Sci. 72, 16–60 (2017). https://doi.org/10.1016/j.progpolymsci.2017.04.004

    Article  Google Scholar 

  51. S. Mishra, L. Unnikrishnan, S.K. Nayak, S. Mohanty, Advances in piezoelectric polymer composites for energy harvesting applications: a systematic review. Macromol. Mater. Eng. (2019). https://doi.org/10.1002/mame.201800463

    Article  Google Scholar 

  52. A.J. Lovinger, Ferroelectric polymers. Science 220, 1115–1121 (1983). https://doi.org/10.1126/science.220.4602.1115

    Article  ADS  Google Scholar 

  53. C. Ning, Z. Zhou, G. Tan, Y. Zhu, C. Mao, Electroactive polymers for tissue regeneration: developments and perspectives. Prog. Polym. Sci. 81, 144–162 (2018). https://doi.org/10.1016/j.progpolymsci.2018.01.001

    Article  Google Scholar 

  54. G. Yin et al., Fabrication and performance analysis of high-performance cylindrical ionic polymer-metal composite actuators with various diameters. Smart Mater. Struct. 31, 115003 (2022). https://doi.org/10.1088/1361-665X/ac9264

    Article  ADS  Google Scholar 

  55. S. Ma et al., High-performance ionic-polymer–metal composite: toward large-deformation fast-response artificial muscles. Adv. Funct. Mater. (2019). https://doi.org/10.1002/adfm.201908508

    Article  Google Scholar 

  56. H.S. Wang et al., High-performance electroactive polymer actuators based on ultrathick ionic polymer-metal composites with nanodispersed metal electrodes. ACS Appl. Mater. Interfaces 9, 21998–22005 (2017). https://doi.org/10.1021/acsami.7b04779

    Article  Google Scholar 

  57. Z. Zhu, K. Asaka, L. Chang, K. Takagi, H. Chen, Multiphysics of ionic polymer–metal composite actuator. J. Appl. Phys. 114, 084902 (2013). https://doi.org/10.1063/1.4818412

    Article  ADS  Google Scholar 

  58. M. Hao et al., A compact review of IPMC as soft actuator and sensor: current trends, challenges, and potential solutions from our recent work. Front. Robot. AI (2019). https://doi.org/10.3389/frobt.2019.00129

    Article  Google Scholar 

  59. Z. Zhu, C. Bian, J. Ru, W. Bai, H. Chen, Rapid deformation of IPMC under a high electrical pulse stimulus inspired by action potential. Smart Mater. Struct. 28, 01LT01 (2019). https://doi.org/10.1088/1361-665X/aadc38

    Article  Google Scholar 

  60. Y. Bahramzadeh, M. Shahinpoor, A review of ionic polymeric soft actuators and sensors. Soft Rob. 1, 38–52 (2014). https://doi.org/10.1089/soro.2013.0006

    Article  Google Scholar 

  61. H. Zhang et al., Low-voltage driven ionic polymer-metal composite actuators: structures, materials, and applications. Adv. Sci. (2023). https://doi.org/10.1002/advs.202206135

    Article  Google Scholar 

  62. S. Mohsen, J.K. Kwang, Ionic polymer-metal composites: I. Fundamentals. Smart Mater. Struct. 10, 819 (2001). https://doi.org/10.1088/0964-1726/10/4/327

    Article  Google Scholar 

  63. M. Farajollahi et al., Characterization and dynamic charge dependent modeling of conducting polymer trilayer bending. Smart Mater. Struct. 25, 115044 (2016). https://doi.org/10.1088/0964-1726/25/11/115044

    Article  ADS  Google Scholar 

  64. F. Hu, Y. Xue, J. Xu, B. Lu, PEDOT-based conducting polymer actuators. Front. Robot. AI 6, 114 (2019). https://doi.org/10.3389/frobt.2019.00114

    Article  ADS  Google Scholar 

  65. D. Melling, J.G. Martinez, E.W.H. Jager, Conjugated polymer actuators and devices: progress and opportunities. Adv. Mater. 31, 1808210 (2019). https://doi.org/10.1002/adma.201808210

    Article  Google Scholar 

  66. R.H. Baughman et al., Carbon nanotube actuators. Science 284, 1340–1344 (1999). https://doi.org/10.1126/science.284.5418.1340

    Article  ADS  Google Scholar 

  67. Y. Bar-Cohen, Electroactive polymers as an enabling materials technology. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 221, 553–564 (2007). https://doi.org/10.1243/09544100jaero141

    Article  Google Scholar 

  68. F. Carpi, R. Kornbluh, P. Sommer-Larsen, G. Alici, Electroactive polymer actuators as artificial muscles: are they ready for bioinspired applications? Bioinspir. Biomimet. 6, 045006 (2011). https://doi.org/10.1088/1748-3182/6/4/045006

    Article  ADS  Google Scholar 

  69. B. Li et al., Effect of mechanical pre-stretch on the stabilization of dielectric elastomer actuation. J. Phys. D Appl. Phys. 44, 155301 (2011). https://doi.org/10.1088/0022-3727/44/15/155301

    Article  ADS  Google Scholar 

  70. A. Poulin, C. Saygili Demir, S. Rosset, T.V. Petrova, H. Shea, Dielectric elastomer actuator for mechanical loading of 2D cell cultures. Lab. Chip 16, 3788–3794 (2016). https://doi.org/10.1039/c6lc00903d

    Article  Google Scholar 

  71. M. Imboden et al., High-speed mechano-active multielectrode array for investigating rapid stretch effects on cardiac tissue. Nat Commun 10, 834 (2019). https://doi.org/10.1038/s41467-019-08757-2

    Article  Google Scholar 

  72. D.-U. Kim, S. Lee, S.-H. Chang, Dynamic cell culture device using electroactive polymer actuators with composite electrodes to transfer in-plane mechanical strain to cells. Int. J. Precis. Eng. Manuf.-Green Technol. 8, 969–980 (2020). https://doi.org/10.1007/s40684-020-00238-y

    Article  Google Scholar 

  73. N.N. Guan, N. Sharma, K. Hallen-Grufman, E.W.H. Jager, K. Svennersten, The role of ATP signalling in response to mechanical stimulation studied in T24 cells using new microphysiological tools. J. Cell Mol. Med. 22, 2319–2328 (2018). https://doi.org/10.1111/jcmm.13520

    Article  Google Scholar 

  74. A. Gelmi et al., Direct mechanical stimulation of stem cells: a beating electromechanically active scaffold for cardiac tissue engineering. Adv. Healthc. Mater. 5, 1471–1480 (2016). https://doi.org/10.1002/adhm.201600307

    Article  Google Scholar 

  75. Y. Wei et al., Directing stem cell differentiation via electrochemical reversible switching between nanotubes and nanotips of polypyrrole array. ACS Nano 11, 5915–5924 (2017). https://doi.org/10.1021/acsnano.7b01661

    Article  Google Scholar 

  76. R.F.B. Turner, C S. Sherwood, In: Diagnostic Biosensor Polymers ACS Symposium Series 211–221 (1994).

  77. B. Kim et al., Analysis of mechanical characteristics of the ionic polymer metal composite (IPMC) actuator using cast ion-exchange film. Proc. SPIE Int. Soc. Opt. Eng. (2003). https://doi.org/10.1117/12.484296

    Article  Google Scholar 

  78. S. Hitsumoto, T. Ihara, K. Morishima, A miniaturized cell stretching tool using ionic polymer metal composites actuator. MRS Online Proc. Libr. 1097, 10970303 (2008). https://doi.org/10.1557/PROC-1097-GG03-03

    Article  Google Scholar 

  79. P. Motreuil-Ragot, et al. In 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft). 530–535.

  80. T. Zheng et al., Biocompatible carbon nanotube-based hybrid microfiber for implantable electrochemical actuator and flexible electronic applications. ACS Appl. Mater. Interfaces 11, 20615–20627 (2019). https://doi.org/10.1021/acsami.9b02927

    Article  Google Scholar 

  81. W. Lu, M. Zu, J.H. Byun, B.S. Kim, T.W. Chou, State of the art of carbon nanotube fibers: opportunities and challenges. Adv. Mater. 24, 1805–1833 (2012). https://doi.org/10.1002/adma.201104672

    Article  Google Scholar 

  82. M.S. Saneei Mousavi et al., Design of a remote-control drug delivery implantable chip for cancer local on demand therapy using ionic polymer metal composite actuator. J Mech. Behav. Biomed. Mater. 86, 250–256 (2018). https://doi.org/10.1016/j.jmbbm.2018.06.034

    Article  Google Scholar 

  83. X.L. Chang, P.S. Chee, E.H. Lim, W.C. Chong, Radio-frequency enabled ionic polymer metal composite (IPMC) actuator for drug release application. Smart Mater. Struct. (2019). https://doi.org/10.1088/1361-665X/aaefd3

    Article  Google Scholar 

  84. T., Madden, J. D., Fekri, N., N. R. Munce, V. X. Yang, Conducting polymer based active catheter for minimally invasive interventions inside arteries. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference 2008, 2063–2066, doi: https://doi.org/10.1109/iembs.2008.4649598 (2008).

  85. G.-H. Feng, J.-W. Tsai, Micromachined optical fiber enclosed 4-electrode IPMC actuator with multidirectional control ability for biomedical application. Biomed. Microdevice 13, 169–177 (2011). https://doi.org/10.1007/s10544-010-9482-6

    Article  Google Scholar 

  86. D.J. Laser, J.G. Santiago, A review of micropumps. J. Micromech. Microeng. 14, R35–R64 (2004). https://doi.org/10.1088/0960-1317/14/6/r01

    Article  Google Scholar 

  87. T.T. Nguyen, N.S. Goo, V.K. Nguyen, Y. Yoo, S. Park, Design, fabrication, and experimental characterization of a flap valve IPMC micropump with a flexibly supported diaphragm. Sens. Actuators, A 141, 640–648 (2008). https://doi.org/10.1016/j.sna.2007.09.017

    Article  Google Scholar 

  88. D.N.C. Nam, K.K. Ahn, Design of an IPMC diaphragm for micropump application. Sens. Actuators, A 187, 174–182 (2012). https://doi.org/10.1016/j.sna.2012.08.027

    Article  Google Scholar 

  89. G.H. Feng, S. Y. Hou, A digital tactile actuator array with normal and shear contact force controllability for refreshable Braille display application, in 2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), pp 835–838 (IEEE, 2015). https://ieeexplore.ieee.org/abstract/document/7181053

  90. Z. Zhu et al., An easily fabricated high performance ionic polymer based sensor network. Appl. Phys. Lett. 109, 073504 (2016). https://doi.org/10.1063/1.4961529

    Article  ADS  Google Scholar 

  91. Z. Zhu et al., Ionic polymer pressure sensor with gradient shape based on ion migration. J. Appl. Phys. 125, 024901 (2019). https://doi.org/10.1063/1.5058100

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (12272278, 12272279) and the Opening Project of MIIT Key Laboratory for Multifunctional Lightweight Materials and Structures, Nanjing University of Aeronautics and Astronautics.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoyou Huang or Zuoqi Zhang.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, J., Zhou, Z., Zhu, Z. et al. Mechanical stimulation of cells with electroactive polymer-based soft actuators. Eur. Phys. J. Spec. Top. 232, 2695–2708 (2023). https://doi.org/10.1140/epjs/s11734-023-00899-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-00899-1

Navigation