Skip to main content

Progress and Current Status of Materials and Properties of Soft Actuators

  • Chapter
  • First Online:
Soft Actuators

Abstract

In this chapter, brief history and current status of soft actuators made of various materials driven by different stimuli are described with typical references as milestones of the progress. The soft actuators originated from unique characteristics of cross-linked polymer gels for understanding their physical and chemical properties of dimensional changes and phase transitions induced by various environmental stimuli such as pH, salt, solvent, heat, light, and electric field. The ‘explosion’ of research and development of soft actuators in the 1990s extended over a variety of materials such as conductive polymers, elastomers, carbon nanotubes, and biomaterials, which had driven further progress in soft actuators not only from the fundamental viewpoint of basic science and materials chemistry and physics but also from the engineering viewpoint for the practical applications to light-weight, low-cost, no-noise, less-pollution, and high-efficiency micro- and macro-artificial muscles and soft robotic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Katchalsky A, Zwick M (1955) Mechanochemistry and ion exchange. J Polym Sci 16:221–234

    Article  CAS  Google Scholar 

  2. Osada Y (1987) Conversion of chemical into mechanical energy by synthetic polymers (chemomechanical systems). In: Olive S, Henrici-Olive G (eds) Advance in Polymer Science, 82. Springer, Berlin/Heiderberg, pp 1–46

    Google Scholar 

  3. Baughman RH, Shacklette LW, Elsenbaumer RL, Plichta E, Becht C (1990) Conducting polymer electromechanical actuators. In: Bredas JL, Chance RR (eds) Conjugated polymeric materials: opportunities in electronics, optoelectronics, and molecular electronics. Kluwer Academic, The Netherlands, pp 559–582

    Chapter  Google Scholar 

  4. Baughman RH, Shacklette LW, Elsenbaumer RL, Plichta EJ, Becht C (1991) Micro electromechanical actuators based on conducting polymers. In: Lazarev PI (ed) Molecular electronics. Kluwer Academic, The Netherlands, pp 267–289

    Chapter  Google Scholar 

  5. DeRossi D, Kajiwara K, Osada Y, Yamauchi A (eds) (1991) Polymer gels: fundamentals and biomedical applications. Plenum, New York/London

    Google Scholar 

  6. Otero TF, Rodríguez J (1993) Electrochemomechanical and electrochemopositioning devices: artificial muscles. In: Aldissi M (ed) Intrinsically conducting polymers: an emerging technology. Kluwer Academic, The Netherlands, pp 179–190

    Chapter  Google Scholar 

  7. Osada Y, Gong JP (1998) Soft and wet materials: polymer gels. Adv Mater 10:827–836

    Article  CAS  Google Scholar 

  8. Bar-Cohen Y (ed) (2001) Electroactive polymer (EAP) actuators as artificial muscles, reality, potential and challenges. SPIE, Bellingham

    Google Scholar 

  9. Smela E (2003) Conjugated polymer actuators for biomedical applications. Adv Mater 15:481–494

    Article  CAS  Google Scholar 

  10. Madden JDW, Vandesteeg NA, Anquetil PA, Madden PGA, Takshi A, Pytel RZ, Lafontaine SR, Wieringa PA, Hunter IW (2004) Artificial muscle technology: physical principles and naval prospects. IEEE J Ocean Eng 29:706–728

    Article  Google Scholar 

  11. Brochu P, Pei Q (2010) Advances in dielectric elastomers for actuators and artificial muscles. Macromol Rapid Commun 31:10–36

    Article  CAS  PubMed  Google Scholar 

  12. Okuzaki H, Kuwabara T, Funasaka K, Saido T (2013) Humidity-sensitive polypyrrole films for electro-active polymer actuators. Adv Funct Mater 23:4400–4407

    Article  CAS  Google Scholar 

  13. Kakugo A, Sugimoto S, Gong JP, Osada Y (2002) Gel machines constructed from chemically cross-linked actins and myosins. Adv Mater 14:1124–1126

    Article  CAS  Google Scholar 

  14. Xi J, Schmidt JJ, Montemagno CD (2005) Self-assembled microdevices driven by muscle. Nat Mater 4:180–184

    Article  CAS  PubMed  Google Scholar 

  15. Soong RK, Bachand GD, Neves HP, Olkhovets AG, Craighead HG, Montemagno CD (2000) Powering an inorganic nanodevice with a biomolecular motor. Science 290:1555–1558

    Article  CAS  PubMed  Google Scholar 

  16. Morishima K, Tanaka Y, Sato K, Ebara M, Shimizu T, Yamato M, Kikuchi A, Okano T, Kitamori T (2003) Bio actuated microsystem using cultured cardiomyocytes. In: Proceedings of the micro total analysis systems. Squaw Valley, CA, USA, pp 1125–1128

    Google Scholar 

  17. Baughman RH, Cui C, Zakhidov AA, Iqbal Z, Barisci JN, Spinks GM, Wallace GG, Mazzoldi A, DeRossi D, Rinzler AG, Jaschinski O, Roth S, Kertesz M (1999) Carbon nanotube actuators. Science 284:1340–1344

    Article  CAS  PubMed  Google Scholar 

  18. Aliev AA, Oh J, Kozlov E, Kunznetsov AA, Fang S, Fonseca AF, Ovalle R, Lima MD, Haque H, Gartstein YN, Zhang M, Zakhidov AA, Baughman RH (2009) Giant-stroke, superelastic carbon nanotube aerogel muscles. Science 323:1575–1578

    Article  CAS  PubMed  Google Scholar 

  19. Lima MD, Li N, Andrade MJ, Fang S, Oh J, Spinks GM, Kozlov ME, Haines CS, Suh D, Foroughi J, Kim J, Chen Y, Ware T, Shin MK, Machado LD, Fonseca AF, Madden JDW, Voit WE, Galvao DS, Baughman RH (2012) Electrically, chemically, and potonically powered torsional and tensile actuation of hybrid carbon nanotube yarn muscles. Science 338:928–932

    Article  CAS  PubMed  Google Scholar 

  20. Yu Y, Nakano M, Ikeda T (2003) Directed bending of a polymer film by light. Nature 425:145

    Article  CAS  PubMed  Google Scholar 

  21. Yamada M, Kondo M, Mamiya J, Yu Y, Kinoshita M, Barrett CJ, Ikeda T (2008) Photomobile polymer materials: towards light-driven plastic motors. Angew Chem Int Ed 47:4986–4988

    Article  CAS  Google Scholar 

  22. Pelrine RE, Kornbluh RD, Joseph JP (1998) Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sens Actuators A 64:7–85

    Article  Google Scholar 

  23. Pelrine R, Kornbluh R, Pei Q, Joseph J (2000) High-speed electrically actuated elastomers with strain greater than 100 %. Science 287:836–839

    Article  CAS  PubMed  Google Scholar 

  24. Pelrine R, Kornbluh R, Kofod G (2000) High-strain actuator materials based on dielectric elastomers. Adv Mater 12:1223–1225

    Article  CAS  Google Scholar 

  25. Hirai T, Sadatoh H, Ueda T, Kasazaki T, Kurita Y, Hirai M, Hayashi S (1996) Polyurethane-elastomer-actuator. Die Angew Makromol Chem 240:221–229

    Article  CAS  Google Scholar 

  26. Zhang QM, Bharti V, Zhao X (1998) Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Science 280:2101–2104

    Article  CAS  PubMed  Google Scholar 

  27. Lehmann W, Hartmann L, Kremer F, Stein P, Finkelmann H (1999) Direct and inverse electromechanical effect in ferroelectric liquid crystalline elastomers. J Appl Phys 86:1647–1652

    Article  CAS  Google Scholar 

  28. Lehmann W, Skupin H, Tolksdorf C, Gebhard E, Zentel R, Kruger P, Losche M, Kremer F (2001) Giant lateral electrostriction in ferroelectric liquid-crystalline elastomers. Nature 410:447–450

    Article  CAS  PubMed  Google Scholar 

  29. Okuzaki H, Kunugi T (1998) Electrically induced contraction of polypyrrole film in ambient air. J Polym Sci Polym Phys 36:1591–1594

    Article  CAS  Google Scholar 

  30. Okuzaki H, Suzuki H, Ito T (2009) Electromechanical properties of poly(3,4-ethylenedioxythiophene)/poly(4-styrene sulfonate) films. J Phys Chem B 113:11378–11383

    Article  CAS  PubMed  Google Scholar 

  31. Ma M, Guo L, Anderson DG, Langer R (2013) Bio-inspired polymer composite actuator and generator driven by water gradients. Science 339:186–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Okuzaki H, Kunugi T (1996) Adsorption-induced bending of polypyrrole films and its application to a chemomechanical rotor. J Polym Sci Polym Phys 34:1747–1749

    Article  CAS  Google Scholar 

  33. Okuzaki H, Funasaka K (2000) Electromechanical properties of a humido-sensitive conducting polymer film. Macromolecules 33:8307–8311

    Article  CAS  Google Scholar 

  34. Smela E, Inganäs O, Lundström I (1995) Controlled folding of micrometer-sized structures. Science 268:735–1738

    Article  Google Scholar 

  35. Kaneto K, Kaneko M, Min Y, MacDiarmid AG (1995) “Artificial muscles”: electrochemical actuators using polyaniline films. Synth Met 71:2211–2212

    Article  CAS  Google Scholar 

  36. Takashima W, Kaneko M, Kaneto K, MacDiarmid AG (1995) The electrochemical actuator using electrochemically-deposited poly-aniline film. Synth Met 71:2265–2266

    Article  CAS  Google Scholar 

  37. Lu W, Fadeev AG, Qi B, Smela E, Mattes BR, Geoffrey JD, Spinks M, Mazurkiewicz J, Zhou D, Wallace GG, MacFarlane DR, Forsyth SA, Forsyth M (2002) Use of ionic liquids for π-conjugated polymer electrochemical devices. Science 297:983–987

    Article  CAS  PubMed  Google Scholar 

  38. Hara S, Zama T, Takashima W, Kaneto K (2004) TFSI-doped polypyrrole actuator with 26 % strain. J Mater Chem 14:1516–1517

    Article  CAS  Google Scholar 

  39. Pei Q, Inganäs O (1992) Electrochemical application of the bending beam method. 1. Mass transport and volume changes in polypyrrole during redox. J Phys Chem 96:10507–10514

    Article  CAS  Google Scholar 

  40. Pei Q, Inganäs O (1992) Conjugated polymers and the bending cantilever method: electrical muscles and smart devices. Adv Mater 4:277–278

    Article  CAS  Google Scholar 

  41. Otero TF, Angulo E, Rodriguez J, Santamaria C (1992) Electrochemomechanical properties from a bilayer: polypyrrole/non-conducting and flexible material - artificial muscle. J Electroanal Chem 341:369–375

    Article  CAS  Google Scholar 

  42. Hara S, Zama T, Sewa S, Takashima W, Kaneto K (2003) Highly stretchable and powerful polypyrrole linear actuators. Chem Lett 32:576–577

    Article  CAS  Google Scholar 

  43. Spinks GM, Mottaghitalab V, Bahrami-Samani M, Whitten PG, Wallace GG (2006) Carbon-nanotube-reinforced polyaniline fibers for high-strength artificial muscles. Adv Mater 18:637–640

    Article  CAS  Google Scholar 

  44. Zama T, Tanaka N, Takashima W, Kaneto K (2006) Fast and large stretching bis(trifluoromethanesulfonyl)imide-doped polypyrrole actuators and their applications to small devices. Polym J 38:669–677

    Article  CAS  Google Scholar 

  45. Hirai T (1995) Actuator materials from polymer gels. Polymer gels responding to electric and magnetic field. J Mater Sci Soc Jpn 32:59–63

    CAS  Google Scholar 

  46. Mitsumata T, Nagata A, Sakai K, Takimoto J (2005) Giant complex modulus reduction of κ-carrageenan magnetic gels. Macromol Rapid Commun 26:1538–1541

    Article  CAS  Google Scholar 

  47. Zrinyi M, Barsi L, Buki A (1996) Deformation of ferrogels induced by nonuniform magnetic fields. J Chem Phys 104:8750–8756

    Article  CAS  Google Scholar 

  48. Agolini F, Gay FP (1970) Synthesis and properties of azoaromatic polymers. Macromolecules 3:349–351

    Article  CAS  Google Scholar 

  49. Smets G, De Blauwe F (1974) Chemical reactions in solid polymeric systems. Photomechanical phenomena. Pure Appl Chem 39:225–238

    Article  CAS  Google Scholar 

  50. Aviram A (1978) Mechanophotochemistry. Macromolecules 11:1275–1280

    Article  CAS  Google Scholar 

  51. Irie M, Kunwatchakun D (1986) Photoresponsive polymers. 8 reversible photostimulated dilation of polyacrylamide gels having triphenylmethane leuco derivatives. Macromolecules 19:2476–2480

    Article  CAS  Google Scholar 

  52. Suzuki A, Tanaka T (1990) Phase transition in polymer gels induced by visible light. Nature 346:345–347

    Article  CAS  Google Scholar 

  53. Juodkazis S, Mukai N, Wakaki R, Yamaguchi A, Matsuo S, Misawa H (2000) Reversible phase transitions in polymer gels induced by ratiation forces. Nature 408:178–181

    Article  CAS  PubMed  Google Scholar 

  54. Hamlen RP, Kent CE, Shafer SN (1965) Electolytically activated contractile polymer. Nature 206:1149–1150

    Article  CAS  Google Scholar 

  55. Yannas IV, Grodzinski AJ (1973) Electromechanical energy conversion with collagen fibers in an aqueous medium. J Mechanochem Cell Mobilily 2:113–125

    CAS  Google Scholar 

  56. Grodzinski AJ, Shoenfeld NA (1977) Tensile forces induced in collagen by means of electromechanochemical transductive coupling. Polymer 18:435–443

    Article  Google Scholar 

  57. Osada Y, Hasebe M (1985) Electrically activated mechanochemical devices using polyelectrolyte gels. Chem Lett 14:1285–1288

    Article  Google Scholar 

  58. DeRossi D, Parrini P, Chiarelli P, Buzzigoli G (1985) Electrically induced contractile phenomena in charged polymer networks: preliminary study on the feasibility of musclelike structures. Trans Am Soc Artif Intern Organs 31:60–65

    CAS  Google Scholar 

  59. Osada Y, Okuzaki H, Hori H (1992) A polymer gel with electrically driven motility. Nature 355:242–244

    Article  CAS  Google Scholar 

  60. Oguro K, Kawami Y, Takenaka H (1992) Bending of an ion-conducting polymer film-electrode composite by an electric stimulus at low voltage. J Micromachine Soc 5:27–30

    Google Scholar 

  61. Shiga T, Hirose Y, Okada A, Kurauchi T (1992) Bending of poly(vinyl alcohol)-poly(sodium acrylate) composite hydrogel in electric fields. J Appl Polym Sci 44:249–253

    Article  Google Scholar 

  62. Hirai T, Nemoto H, Hirai M, Hayashi S (1994) Electrostriction of highly swollen polymer gel: possible application for gel actuator. J Appl Polym Sci 53:79–84

    Article  CAS  Google Scholar 

  63. Kishi R, Suzuki Y, Ichijo H, Hirasa O (1994) Electrical deformation of thermotropic liquid-crystalline polymer gels. Chem Lett 23:2257–2260

    Article  Google Scholar 

  64. Asaka K, Oguro K, Nishimura Y, Mizuhara M, Takenaka H (1995) Bending of polyelectrolyte membrane-platinum composites by electric stimuli I. Response characteristics to various waveforms. Polym J 27:436–440

    Article  CAS  Google Scholar 

  65. Fukushima T, Asaka K, Kosaka A, Aida T (2005) Fully plastic actuator through layer-by-layer casting with ionic-liquid-based bucky gel. Angew Chem Int Ed 44:2410–2413

    Article  CAS  Google Scholar 

  66. Hirai T, Ogiwara T, Fujii K, Ueki T, Kinoshita K, Takasaki M (2009) Electrically active artificial pupli showing amoeba-like pseudopodial deformation. Adv Mater 21:2886–2888

    Article  CAS  Google Scholar 

  67. Mukai K, Asaka K, Sugino T, Kiyohara K, Takeuchi I, Terasawa N, Futaba DN, Hata K, Fukushima T, Aida T (2009) Highly conductive sheets from millimeter-long single-walled carbon nanotubes and ionic liquids: application to fast-moving, low-voltage electromechanical actuators operable in air. Adv Mater 21:1582–1585

    Article  CAS  Google Scholar 

  68. Tanaka T, Nishio I, Sun ST, Nishio SU (1982) Collapse of gels in an electric field. Science 218:467–469

    Article  CAS  PubMed  Google Scholar 

  69. DeRossi D, Chiarelli P, Buzzigoli G, Domenichi C, Lazzeri L (1986) Contractile behavior of electrically activated mechanochemical polymer actuators. Trans Am Soc Artif Intern Organs 32:157–162

    CAS  Google Scholar 

  70. Shiga T, Kurauchi T (1990) Deformation of polyelectrolyte gels under the influence of electric field. J Appl Polym Sci 39:2305–2320

    Article  CAS  Google Scholar 

  71. Shiga T, Hirose Y, Okada A, Kurauchi T (1993) Bending of ionic polymer gel caused by swelling under sinusoidally varying electric fields. J Appl Polym Sci 47:113–119

    Article  CAS  Google Scholar 

  72. Hirai T, Nemoto H, Suzuki T, Hayashi S, Hirai M (1993) Actuation of poly(vinyl alcohol) gel by electric field. J Intell Mater Syst Struct 4:277–279

    Article  Google Scholar 

  73. Tanaka T, Ishiwata S, Ishimoto C (1977) Critical behavior of density fluctuations in gels. Phys Rev Lett 38:771–774

    Article  CAS  Google Scholar 

  74. Tanaka T, Fillmore DJ, Sun ST, Nishio I, Swislow G, Shah A (1980) Phase transitions in ionic gels. Phys Rev Lett 45:1636–1639

    Article  CAS  Google Scholar 

  75. Tanaka T, Sato E, Hirokawa Y, Hirotsu S, Peetermans J (1985) Critical kinetics of volume phase transition of gels. Phys Rev Lett 55:2455–2458

    Article  CAS  PubMed  Google Scholar 

  76. Suzuki M, Hirasa O (1993) An approach to artificial muscle using polymer gels formed by micro-phase separation. Adv Polym Sci 110:242–261

    Google Scholar 

  77. Osada Y, Saito Y (1975) Mechanochemical energy conversion in a polymer membrane by thermo-reversible polymer-polymer interactions. Makromolekulare Chem 176:2761–2764

    Article  CAS  Google Scholar 

  78. Tanaka T (1978) Collapse of gels and the criticalendpoint. Phys Rev Lett 40:820–823

    Article  CAS  Google Scholar 

  79. Yoshida R, Uchida K, Kaneko Y, Sakai K, Kikuchi A, Sakurai Y, Okano T (1995) Comb-type grafted hydrogels with rapid deswelling response to temperature changes. Nature 374:240–242

    Article  CAS  Google Scholar 

  80. Osada Y, Matsuda A (1995) Shape memory in hydrogels. Nature 376:219

    Article  CAS  PubMed  Google Scholar 

  81. Yoshida R, Takahashi T, Yamaguchi T, Ichijo H (1996) Self-oscillating gel. J Am Chem Soc 118:5134–5135

    Article  CAS  Google Scholar 

  82. Tanaka T, Fillmore DJ (1979) Kinetics of swelling of gels. J Chem Phys 70:1214–1218

    Article  CAS  Google Scholar 

  83. Steinberg IZ, Oplatka A, Katchalsky A (1966) Mechanochemical engines. Nature 210:568–571

    Article  CAS  Google Scholar 

  84. Sussman MV, Katchalsky A (1970) Mechanochemical turbine: a new power cycle. Science 167:45–47

    Article  CAS  PubMed  Google Scholar 

  85. Sussman MV (1975) Mechanochemical availability. Nature 256:195–198

    Article  CAS  Google Scholar 

  86. Kuhn W, Hargitay B, Katchalsky A, Eisenberg H (1950) Reversible dilation and contraction by changing the stage of ionization of high-polymer acid networks. Nature 165:514–516

    Article  CAS  Google Scholar 

  87. Katchalsky A (1949) Rapid swelling and deswelling of reversible gels of polymeric acids by ionization. Experimentia 5:319–320

    Article  CAS  Google Scholar 

  88. Kuhn W (1949) Reversible dehnung und kontraktion bei anderung der ionisation eines netzwerks polyvalenter fadenmolekulionen. Experimentia 5:318–319

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidenori Okuzaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Okuzaki, H. (2019). Progress and Current Status of Materials and Properties of Soft Actuators. In: Asaka, K., Okuzaki, H. (eds) Soft Actuators. Springer, Singapore. https://doi.org/10.1007/978-981-13-6850-9_1

Download citation

Publish with us

Policies and ethics