Skip to main content
Log in

Natural convection investigation under influence of internal bodies within a nanofluid-filled square cavity

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The current article presents a numerical simulation of the nanofluid convection inside a square enclosure with two inner adiabatic circular bodies. Galerkin finite-element analysis was utilized to solve the governing equations under the assumptions of laminar, steady flow conditions considering a homogeneous single-phase approach. The parameters under investigation are Rayleigh number (Ra), solid volume fraction, the horizontal position of the two inner cylinders, and the inclination angle of the enclosure. The results indicate that increasing the Rayleigh number, and the solid volume fraction improves the heat transport rate. It is obtained that at low Ra, there is no significant impact on the enclosure angle, while as the Ra goes up, the heat transfer rate increases gradually. In addition, the best location of the internal bodies is in the middle of the cavity as it exhibits an increase in the flow velocity. To obtain the highest Nusselt number, it is recommended to use an inclination angle of 30 at any value of the Rayleigh number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

\(C_{p}\) :

Specific heat (KJ/kg K )

g :

Gravitational acceleration (m/s\(^{2})\)

Gr:

Grashof number

K :

Thermal conductivity (W/m K)

l :

The horizontal location of the cylinders inside the cavity

L :

Length of the wall

Nu:

Nusselt number

P :

Dimensionless pressure

P :

Pressure (Pa)

Pr:

Prandtl number

r :

The radius of the cylinder (m)

R :

Dimensionless radius of the cylinder

Ra:

Rayleigh number

T :

Temperature (K)

XY :

Dimensionless coordinates

UV :

Dimensionless velocity component in x- and y-direction

\(\beta \) :

Volume coefficient

\(\theta \) :

Dimensionless temperature

\(\emptyset \) :

Solid volume fraction

\(\alpha \) :

Thermal diffusivity (m\(^{2}\)/s)

\(\gamma \) :

Inclination angle (counter-clockwise)

\(\mu \) :

Dynamic viscosity (kg s/m)

\(\rho \) :

Density (kg/m\(^{3})\)

\(\psi \) :

Dimensionless stream function

avg:

Average

c:

Cold

f:

Base Fluid

h:

Hot

L:

Local

nf:

nanofluid

np:

Solid particles

x :

Horizontal axis

References

  1. R. Zhang, S. Aghakhani, A. Hajatzadeh Pordanjani, S.M. Vahedi, A. Shahsavar, M. Afrand, Investigation of the entropy generation during natural convection of Newtonian and non-Newtonian fluids inside the L-shaped cavity subjected to magnetic field: application of lattice Boltzmann method (Phys J. Plus, Eur, 2020). https://doi.org/10.1140/epjp/s13360-020-00169-2

    Book  Google Scholar 

  2. E. Abu-Nada, I. Pop, O. Mahian, A dissipative particle dynamics two-component nanofluid heat transfer model: application to natural convection. Int. J. Heat Mass Transf. 133, 1086–98 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.151

    Article  Google Scholar 

  3. R. Mohebbi, S.A.M. Mehryan, M. Izadi, O. Mahian, Natural convection of hybrid nanofluids inside a partitioned porous cavity for application in solar power plants. J. Therm. Anal. Calorim. 137(5), 1719–33 (2019). https://doi.org/10.1007/s10973-019-08019-9

    Article  Google Scholar 

  4. A.D. Abdulsahib, K. AlFarhany, Review of the effects of stationary/rotating cylinder in a cavity on the convection heat transfer in porous media with/without nanofluid. Math. Model Eng. Probl. 8(3), 356–64 (2021). https://doi.org/10.18280/mmep.080304

    Article  Google Scholar 

  5. A. Abdulkadhim, I.M. Abed, N.M. Said, An exhaustive review on natural convection within complex enclosures: influence of various parameters. Chin. J. Phys. 74, 365–88 (2021). https://doi.org/10.1016/j.cjph.2021.10.012

    Article  Google Scholar 

  6. K.S. Hwang, J.-H. Lee, S.P. Jang, Buoyancy-driven heat transfer of water-based Al\(_2\)O\(_3\) nanofluids in a rectangular cavity. Int. J. Heat Mass Transf. 50(19), 4003–10 (2007). https://doi.org/10.1016/j.ijheatmasstransfer.2007.01.037

    Article  MATH  Google Scholar 

  7. K.K. Al-Chlaihawi, H.H. Alaydamee, A.E. Faisal, K. Al-Farhany, M.A. Alomari, Newtonian and non-Newtonian nanofluids with entropy generation in conjugate natural convection of hybrid nanofluid-porous enclosures: A review. Heat Transf. (2021). https://doi.org/10.1002/htj.22372

    Article  Google Scholar 

  8. A. Abdulkadhim, I.M. Abed, S.N. Mahjoub, Review of natural convection within various shapes of enclosures. Arab. J. Sci. Eng. 46(12), 11543–86 (2021). https://doi.org/10.1007/s13369-021-05952-6

    Article  Google Scholar 

  9. M.F. Almensoury, A.S. Hashim, H.K. Hamzah, F.H. Ali, Numerical investigation of natural convection of a non-Newtonian nanofluid in an F-shaped porous cavity. Heat Transf. 50(3), 2403–26 (2021). https://doi.org/10.1002/htj.21984

    Article  Google Scholar 

  10. A.K. Santra, S. Sen, N. Chakraborty, Study of heat transfer augmentation in a differentially heated square cavity using copper-water nanofluid. Int. J. Therm. Sci. 47(9), 1113–22 (2008). https://doi.org/10.1016/j.ijthermalsci.2007.10.005

    Article  Google Scholar 

  11. K. Al-Farhany, M.F. Al-Dawody, D.A. Hamzah, N.H. Hamza (eds.), Numerical Study of Nanofluid Natural Convection in a Partially Heated Tall Enclosure (IOP Publishing Ltd, New York, 2020)

    Google Scholar 

  12. N.K. Manna, N. Biswas, P.S. Mahapatra, Convective heat transfer enhancement: effect of multi-frequency heating. Int. J. Numer. Methods Heat Fluid Flow. 29(10), 3822–56 (2019). https://doi.org/10.1108/HFF-07-2018-0414

    Article  Google Scholar 

  13. S. Yang, B. Huang, J. Wang, P.D. Lund, Characteristics of natural convection in n-eicosane in a square cavity with discrete heat source. Case Stud. Therm. Eng. 27, 101245 (2021). https://doi.org/10.1016/j.csite.2021.101245

    Article  Google Scholar 

  14. C.J. Ho, M.W. Chen, Z.W. Li, Numerical simulation of natural convection of nanofluid in a square enclosure: effects due to uncertainties of viscosity and thermal conductivity. Int. J. Heat Mass Transf. 51(17–18), 4506–16 (2008). https://doi.org/10.1016/j.ijheatmasstransfer.2007.12.019

    Article  MATH  Google Scholar 

  15. P. Ternik, R. Rudolf, Heat transfer enhancement for natural convection flow of water-based nanofluids in a square enclosure. Int. J. Simul. Model. 11(1), 29–39 (2012). https://doi.org/10.2507/IJSIMM11(1)3.198

    Article  Google Scholar 

  16. H.F. Oztop, M. Mobedi, E. Abu-Nada, I. Pop, A heatline analysis of natural convection in a square inclined enclosure filled with a CuO nanofluid under non-uniform wall heating condition. Int. J. Heat Mass Transf. 55(19–20), 5076–86 (2012). https://doi.org/10.1016/j.ijheatmasstransfer.2012.05.007

    Article  Google Scholar 

  17. E. Abu-Nada, H.F. Oztop, Effects of inclination angle on natural convection in enclosures filled with Cu–water nanofluid. Int. J. Heat Fluid Flow. 30(4), 669–78 (2009). https://doi.org/10.1016/j.ijheatfluidflow.2009.02.001

    Article  Google Scholar 

  18. K. Al-Farhany, K.K. Al-Chlaihawi, M.F. Al-dawody, N. Biswas, A.J. Chamkha, Effects of fins on magnetohydrodynamic conjugate natural convection in a nanofluid-saturated porous inclined enclosure. Int. Commun. Heat Mass Transf. (2021). https://doi.org/10.1016/j.icheatmasstransfer.2021.105413

    Article  Google Scholar 

  19. K. Al-Farhany, M.F. Al-dawody, D.A. Hamzah, W. Al-Kouz, Z. Said, Numerical investigation of natural convection on Al\(_2\)O\(_3\)–water porous enclosure partially heated with two fins attached to its hot wall: under the MHD effects. Appl. Nanosci. (Switzerland) (2021). https://doi.org/10.1007/s13204-021-01855-y

    Article  Google Scholar 

  20. M. Sheikholeslami, R. Ellahi, Three dimensional mesoscopic simulation of magnetic field effect on natural convection of nanofluid. Int. J. Heat Mass Transf. 89, 799–808 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.110

    Article  Google Scholar 

  21. B. Şahin, Effects of the center of linear heating position on natural convection and entropy generation in a linearly heated square cavity. Int. Commun. Heat Mass Transf. 117, 104675 (2020). https://doi.org/10.1016/j.icheatmasstransfer.2020.104675

    Article  Google Scholar 

  22. M. Sheremet, I. Pop, H.F. Öztop, N. Abu-Hamdeh, Natural convection of nanofluid inside a wavy cavity with a non-uniform heating: entropy generation analysis. Int. J. Numer. Methods Heat Fluid Flow. 27(4), 958–80 (2017). https://doi.org/10.1108/HFF-02-2016-0063

    Article  Google Scholar 

  23. R. Yaghoubi Emami, M. Siavashi, M.G. Shahriari, The effect of inclination angle and hot wall configuration on Cu–water nanofluid natural convection inside a porous square cavity. Adv. Powder Technol. 29(3), 519–36 (2018). https://doi.org/10.1016/j.apt.2017.10.027

    Article  Google Scholar 

  24. S.H. Hussain, A.K. Hussein, Numerical investigation of natural convection phenomena in a uniformly heated circular cylinder immersed in square enclosure filled with air at different vertical locations. Int. Commun. Heat Mass Transf. 37(8), 1115–26 (2010). https://doi.org/10.1016/j.icheatmasstransfer.2010.05.016

    Article  Google Scholar 

  25. H.S. Yoon, M.Y. Ha, B.S. Kim, D.H. Yu, Effect of the position of a circular cylinder in a square enclosure on natural convection at Rayleigh number of 107. Phys. Fluids (2009). https://doi.org/10.1063/1.3112735

    Article  MATH  Google Scholar 

  26. A. Baïri, E. Zarco-Pernia, J.M. García de María, A review on natural convection in enclosures for engineering applications. The particular case of the parallelogrammic diode cavity. Appl. Therm. Eng. 63(1), 304–22 (2014). https://doi.org/10.1016/j.applthermaleng.2013.10.065

    Article  Google Scholar 

  27. J. Park, M. Kim, G.S. Mun, Y.G. Park, M.Y. Ha, Natural convection in a square enclosure with a circular cylinder with adiabatic side walls according to bottom wall temperature variation. J. Mech. Sci. Technol. 32(7), 3201–11 (2018). https://doi.org/10.1007/s12206-018-0623-9

    Article  Google Scholar 

  28. F. Redouane, W. Jamshed, S.S.U. Devi, B.M. Amine, R. Safdar, K. Al-Farhany et al., Influence of entropy on Brinkman–Forchheimer model of MHD hybrid nanofluid flowing in enclosure containing rotating cylinder and undulating porous stratum. Sci. Rep. 11(1), 24316 (2021). https://doi.org/10.1038/s41598-021-03477-4

    Article  ADS  Google Scholar 

  29. A.K. Hussein, Computational analysis of natural convection in a parallelogrammic cavity with a hot concentric circular cylinder moving at different vertical locations. Int. Commun. Heat Mass Transf. 46, 126–33 (2013). https://doi.org/10.1016/j.icheatmasstransfer.2013.05.008

    Article  Google Scholar 

  30. M. Hatami, H. Safari, Effect of inside heated cylinder on the natural convection heat transfer of nanofluids in a wavy-wall enclosure. Int. J. Heat Mass Transf. 103, 1053–7 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.029

    Article  Google Scholar 

  31. L. Wang, Y. Zhao, X. Yang, B. Shi, Z. Chai, A lattice Boltzmann analysis of the conjugate natural convection in a square enclosure with a circular cylinder. Appl. Math. Model. 71, 31–44 (2019). https://doi.org/10.1016/j.apm.2019.02.012

    Article  MathSciNet  MATH  Google Scholar 

  32. J. Ravnik, L. Škerget, A numerical study of nanofluid natural convection in a cubic enclosure with a circular and an ellipsoidal cylinder. Int. J. Heat Mass Transf. 89, 596–605 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.089

    Article  Google Scholar 

  33. H.S. Yoon, J.H. Jung, Y.G. Park, Natural convection in a square enclosure with two horizontal cylinders. Numer. Heat Transf. Part A Appl. 62(9), 701–21 (2012). https://doi.org/10.1080/10407782.2012.709438

    Article  ADS  Google Scholar 

  34. H.W. Cho, Y.G. Park, M.Y. Ha, The natural convection in a square enclosure with two hot inner cylinders, part I: the effect of one elliptical cylinder with various aspect ratios in a vertical array. Int. J. Heat Mass Transf. 125, 815–27 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.141

    Article  Google Scholar 

  35. I. Bouafia, R. Mehdaoui, S. Kadri, M. Elmir, Conjugate natural convection in a square porous cavity filled with a nanofluid in the presence of two isothermal cylindrical sources. J. Adv. Res. Fluid Mech. Therm. Sci. 80(1), 147–64 (2021). https://doi.org/10.37934/ARFMTS.80.1.147164

    Article  Google Scholar 

  36. Y.G. Park, M.Y. Ha, C. Choi, J. Park, Natural convection in a square enclosure with two inner circular cylinders positioned at different vertical locations. Int. J. Heat Mass Transf. 77, 501–18 (2014). https://doi.org/10.1016/j.ijheatmasstransfer.2014.05.041

    Article  Google Scholar 

  37. M.S. Astanina, M.A. Sheremet, H.F. Oztop, N. Abu-Hamdeh, Mixed convection of Al\(_2\)O\(_3\)–water nanofluid in a lid-driven cavity having two porous layers. Int. J. Heat Mass Transf. 118, 527–37 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.018

    Article  Google Scholar 

  38. Q. Yu, H. Xu, S. Liao, Analysis of mixed convection flow in an inclined lid-driven enclosure with Buongiorno’s nanofluid model. Int. J. Heat Mass Transf. 126, 221–36 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.109

    Article  Google Scholar 

  39. T. Mahalakshmi, N. Nithyadevi, H.F. Oztop, N. Abu-Hamdeh, MHD mixed convective heat transfer in a lid-driven enclosure filled with Ag–water nanofluid with center heater. Int. J. Mech. Sci. 142–143, 407–19 (2018). https://doi.org/10.1016/j.ijmecsci.2018.05.008

    Article  Google Scholar 

  40. K.M. Gangawane, H.F. Oztop, N. Abu-Hamdeh, Mixed convection characteristic in a lid-driven cavity containing heated triangular block: effect of location and size of block. Int. J. Heat Mass Transf. 124, 860–75 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.079

    Article  Google Scholar 

  41. F.H. Ali, H.K. Hamzah, A. Abdulkadhim, Numerical study of mixed convection nanofluid in an annulus enclosure between outer rotating cylinder and inner corrugation cylinder. Heat Transf. Asian Res. 48(1), 343–60 (2019). https://doi.org/10.1002/htj.21387

    Article  Google Scholar 

  42. A.K. Hussein, H.K. Hamzah, F.H. Ali, L. Kolsi, Mixed convection in a trapezoidal enclosure filled with two layers of nanofluid and porous media with a rotating circular cylinder and a sinusoidal bottom wall. J. Therm. Anal. Calorim. 141(5), 2061–79 (2020). https://doi.org/10.1007/s10973-019-08963-6

    Article  Google Scholar 

  43. F. Selimefendigil, H.F. Öztop, Mixed convection of nanofluids in a three dimensional cavity with two adiabatic inner rotating cylinders. Int. J. Heat Mass Transf. 117, 331–43 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.116

    Article  Google Scholar 

  44. F. Selimefendigil, M.A. Ismael, A.J. Chamkha, Mixed convection in superposed nanofluid and porous layers in square enclosure with inner rotating cylinder. Int. J. Mech Sci. 124–125, 95–108 (2017). https://doi.org/10.1016/j.ijmecsci.2017.03.007

    Article  Google Scholar 

  45. Y.C. Shih, Y.J. Cheng, The effect of viscous dissipation on heat transfer in cavities of varying shape due to an inner rotating circular cylinder. Numer. Heat Transf. Part A Appl. 68(2), 150–73 (2015). https://doi.org/10.1080/10407782.2014.977134

    Article  ADS  Google Scholar 

  46. A.D. Abdulsahib, K. Al-Farhany (eds.), Numerical Investigation of the Nanofluid Mixed Convection on Two Layers Enclosure with Rotating Cylinder: High Darcy Number Effects (IOP Publishing Ltd, New York, 2020)

    Google Scholar 

  47. K. Al-Farhany, A.D. Abdulsahib, Study of mixed convection in two layers of saturated porous medium and nanofluid with rotating circular cylinder. Prog. Nucl. Energy 135, 103723 (2021). https://doi.org/10.1016/j.pnucene.2021.103723

    Article  Google Scholar 

  48. K. Khanafer, S.M. Aithal, M.E. Assad, I. Pop, Flow and heat transfer in a driven cavity with two cylinders. J. Thermophys. Heat Transf. 31(1), 99–108 (2017). https://doi.org/10.2514/1.T4744

    Article  Google Scholar 

  49. P. Barnoon, D. Toghraie, R.B. Dehkordi, H. Abed, MHD mixed convection and entropy generation in a lid-driven cavity with rotating cylinders filled by a nanofluid using two phase mixture model. J. Magn. Magn. Mater. 483, 224–48 (2019). https://doi.org/10.1016/j.jmmm.2019.03.108

  50. S.O. Giwa, M. Sharifpur, J.P. Meyer, Experimental study of thermo-convection performance of hybrid nanofluids of Al\(_2\)O\(_3\)-MWCNT/water in a differentially heated square cavity. Int. J. Heat Mass Transf. (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2019.119072

    Article  Google Scholar 

  51. Y. Hu, Y. He, C. Qi, B. Jiang, S.H. Inaki, Experimental and numerical study of natural convection in a square enclosure filled with nanofluid. Int. J. Heat Mass Transf. 78, 380–92 (2014). https://doi.org/10.1016/j.ijheatmasstransfer.2014.07.001

    Article  Google Scholar 

  52. A.D. Abdulsahib, K. Al-Farhany, Experimental investigation of mixed convection on a rotating circular cylinder in a cavity filled with nanofluid and porous media. Al-Qadisiyah J. Eng. Sci. 13(2), 99–108 (2020). https://doi.org/10.30772/qjes.v13i2.653

    Article  Google Scholar 

  53. S.H. Hussain, M.S. Rahomey, Comparison of natural convection around a circular cylinder with different geometries of cylinders inside a square enclosure filled with Ag nanofluid superposed porous nanofluid layers. J. Heat Transf. (2019). https://doi.org/10.1115/1.4039642

    Article  Google Scholar 

  54. B.M. Al-Srayyih, S. Gao, S.H. Hussain, Effects of linearly heated left wall on natural convection within a superposed cavity filled with composite nanofluid-porous layers. Adv. Powder Technol. 30(1), 55–72 (2019). https://doi.org/10.1016/j.apt.2018.10.007

    Article  Google Scholar 

  55. H.K. Rashid, M.F. Almensoury, A.S. Hashim, H.K. Hamzah, F.H. Ali, Free convection of Ag/H\(_2\)O nanofluid in square cavity with different position and orientation of egg shaped cylinder. J. Eng. Technol. Sci. (2021). https://doi.org/10.5614/j.eng.technol.sci.2021.53.4.9

    Article  Google Scholar 

  56. M. Mahmoodi, S.M. Sebdani, Natural convection in a square cavity containing a nanofluid and an adiabatic square block at the center. Superlattices Microstruct. 52(2), 261–75 (2012). https://doi.org/10.1016/j.spmi.2012.05.007

    Article  ADS  Google Scholar 

  57. R.A. Kuyper, T.H. Van Der Meer, C.J. Hoogendoorn, R.A.W.M. Henkes, Numerical study of laminar and turbulent natural convection in an inclined square cavity. Int. J. Heat Mass Transf. 36(11), 2899–911 (1993). https://doi.org/10.1016/0017-9310(93)90109-J

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled Al-Farhany.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulsahib, A.D., Hashim, A.S., Al-Farhany, K. et al. Natural convection investigation under influence of internal bodies within a nanofluid-filled square cavity. Eur. Phys. J. Spec. Top. 231, 2605–2621 (2022). https://doi.org/10.1140/epjs/s11734-022-00584-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00584-9

Navigation