Skip to main content
Log in

Anti-synchronization of a M-Hopfield neural network with generalized hyperbolic tangent activation function

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

This paper analyzes non-integer Hopfield neural network dynamics introducing the hyperbolic tangent transfer function generalized by the Mittag-Leffler function and the M-truncated derivative with constant and variable order. The novel neural network’s (ANN) behaviors are studied through their dynamics depicted in phase portraits and the 0-1 test to determine where the ANN displays strong chaotic behaviors. According to the numerical results, the generalized Hopfield (M-HNTF) reveals weak chaotic dynamics with constant values under 0.99 and regular behaviors lower than 0.8. Considering the variable order, the chaotic behaviors depend on the decay rate of the time-varying function. Due to this, we got systems with weak chaotic dynamics until strong chaotic dynamics. Next, we used two scenarios to anti-synchronize a system master and a slave system. The first considering a dynamic, chaotic system and a regular system, the second: two M-HNTF with variable order. Numerical results illustrate those mentioned above, showing the control aim. Getting new chaotic dynamics from non-integer systems with variable order is essential to develop protocols to offer secure communications, new random number generators, image encrypts schemes, to name a few.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J.J. Hopfield, Neural networks and physical systems with emergent collective computational abilities. Feynman Comput. 79, 7–19 (2018)

    MathSciNet  Google Scholar 

  2. J. Zhang, X. Jin, Global stability analysis in delayed Hopfield neural network models. Neural Netw. 13(7), 745–753 (2000)

    Google Scholar 

  3. Z. Wang, Y. Liu, K. Fraser, X. Liu, Stochastic stability of uncertain Hopfield neural networks with discrete and distributed delays. Phys. Lett. Sect. A 354(4), 288–297 (2006)

    ADS  MATH  Google Scholar 

  4. H. Huang, Q. Du, X. Kang, Global exponential stability of neutral high-order stochastic Hopfield neural networks with Markovian jump parameters and mixed time delays. ISA Trans. 52(6), 759–767 (2013). https://doi.org/10.1016/j.isatra.2013.07.016

    Article  Google Scholar 

  5. H. Lin, C. Wang, Y. Tan, Hidden extreme multistability with hyperchaos and transient chaos in a Hopfield neural network affected by electromagnetic radiation. Nonlinear Dyn. 99(3), 2369–2386 (2020)

    Google Scholar 

  6. H. Jahanshahi, A. Yousefpour, J. Munoz-Pacheco, I. Moroz, Z. Wei, O. Castillo, A new multi-stable fractional-order four-dimensional system with self-excited and hidden chaotic attractors: dynamic analysis and adaptive synchronization using a novel fuzzy adaptive sliding mode control method. Appl. Soft Comput. 87, 1–11 (2020)

    Google Scholar 

  7. H. Jahanshahi, A. Yousefpour, J. Munoz-Pacheco, S. Kacar, V. Pham, F. Alsaadi, A new fractional-order hyperchaotic memristor oscillator: dynamic analysis, robust adaptive synchronization, and its application to voice encryption. Appl. Math. Comput. 383, 1–12 (2020)

    MathSciNet  MATH  Google Scholar 

  8. H. Jahanshahi, S. Sajjadi, S. Bekiros, A. Aly, On the development of variable-order fractional hyperchaotic economic system with a nonlinear model predictive controller. Chaos Solitons Fractals 144, 1–10 (2021)

    MathSciNet  MATH  Google Scholar 

  9. H. Jahanshahi, O. Orozco-Lopez, J.M. Munoz-Pacheco, N.D. Alotaibi, C. Volos, Z. Wang, R. Sevilla-Escoboza, Y.-M. Chu, Simulation and experimental validation of a non-equilibrium chaotic system. Chaos Solitons Fractals 143, 1–11 (2021)

    MathSciNet  MATH  Google Scholar 

  10. H. Jahanshahi, K. Shanazari, M. Mesrizadeh, S. Soradi-Zeid, J. Gomez-Aguilar, Numerical analysis of Galerkin meshless method for parabolic equations of tumor angiogenesis problem. Eur. Phys. J. Plus 135, 1–23 (2020)

    Google Scholar 

  11. J. Li, H. Jahanshahi, S. Kacar, Y. Chu, J. Gomez-Aguilar, N. Alotaibi, K. Alharbi, On the variable-order fractional memristor oscillator: data security applications and synchronization using a type-2 fuzzy disturbance observer-based robust control. Chaos Solitons Fractals 145, 1–12 (2021)

    MathSciNet  MATH  Google Scholar 

  12. L. Duan, F. Duan, F. Chapeau-Blondeau, D. Abbott, Stochastic resonance in Hopfield neural networks for transmitting binary signals. Phys. Lett. A 384(6), 126143 (2020)

    MathSciNet  MATH  Google Scholar 

  13. V. Veerasamy, N.I.A. Wahab, R. Ramachandran, B. Madasamy, M. Mansoor, M.L. Othman, H. Hizam, A novel rk4-Hopfield neural network for power flow analysis of power system. Appl. Soft Comput. 93, 106346 (2020)

    Google Scholar 

  14. S. Kumar, A new analytical modelling for fractional telegraph equation via Laplace transform. Appl. Math. Model. 38, 3154–3163 (2014)

    MathSciNet  MATH  Google Scholar 

  15. H. Alrabaiah, M. Safi, M. DarAssi, B. Al-Hdaibat, S. Ullah, M. Khan, S. Shah, Optimal control analysis of Hepatitis b virus with treatment and vaccination. Results Phys. 19, 1–10 (2020)

    Google Scholar 

  16. M. Nawaz, J. Wei, J. Sheng, A. Khan, The controllability of damped fractional differential system with impulses and state delay. Adv. Differ. Equ. 1, 1–23 (2020)

    MathSciNet  MATH  Google Scholar 

  17. H. Jahanshahi, M. Shahriari-Kahkeshi, R. Alcaraz, X. Wang, V. Singh, V. Pham, Entropy analysis and neural network-based adaptive control of a non-equilibrium four-dimensional chaotic system with hidden attractors. Entropy 21, 1–15 (2019)

    MathSciNet  Google Scholar 

  18. H. Jahanshahi, Smooth control of HIV/AIDS infection using a robust adaptive scheme with decoupled sliding mode supervision. Eur. Phys. J. Spec. Top. 227, 707–718 (2018)

    Google Scholar 

  19. P. Xiong, H. Jahanshahi, R. Alcaraz, Y. Chu, J. Gomez-Aguilar, F. Alsaadi, Spectral entropy analysis and synchronization of a multi-stable fractional-order chaotic system using a novel neural network-based chattering-free sliding mode technique. Chaos Solitons Fractals 144, 1–11 (2021)

    MathSciNet  MATH  Google Scholar 

  20. M. Khan, L. Ahmed, P. Mandal, R. Smith, M. Haque, Modelling the dynamics of pine wilt disease with asymptomatic carriers and optimal control. Adv. Differ. Equ. 10, 1–15 (2020)

    Google Scholar 

  21. H. Jahanshahi, A. Yousefpour, Z. Wei, R. Alcaraz, S. Bekiros, A financial hyperchaotic system with coexisting attractors: dynamic investigation, entropy analysis, control and synchronization. Chaos Solitons Fractals 126, 66–77 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  22. M. Awais, F. Alshammari, S. Ullah, M. Khan, S. Islam, Modeling and simulation of the novel coronavirus in caputo derivative. Results Phys. 19, 1–10 (2020)

    Google Scholar 

  23. M. Oud, A. Ali, H. Alrabaiah, S. Ullah, M. Khan, S. Islam, A fractional order mathematical model for COVID-19 dynamics with quarantine, isolation, and environmental viral load. Adv. Differ. Equ. 1, 1–19 (2021)

    MathSciNet  Google Scholar 

  24. M. Khan, A. Atangana, Modeling the dynamics of novel coronavirus (2019-ncov) with fractional derivative. Alex. Eng. J. 59, 2379–2389 (2020)

    Google Scholar 

  25. H. Jahanshahi, J. Munoz-Pacheco, S. Bekiros, N. Alotaibi, A fractional-order SIRD model with time-dependent memory indexes for encompassing the multi-fractional characteristics of the COVID-19. Chaos Solitons Fractals 143, 1–11 (2021)

    MATH  Google Scholar 

  26. S. Kumar, A. Ahmadian, R. Kumar, D. Kumar, J. Singh, D. Baleanu, M. Salimi, An efficient numerical method for fractional sir epidemic model of infectious disease by using Bernstein wavelets. Mathematics 8, 1–15 (2020)

    Google Scholar 

  27. S. Kumar, R. Kumar, R. Agarwal, B. Samet, A study of fractional Lotka-Volterra population model using Haar wavelet and Adams-Bashforth-Moulton methods. Math. Methods Appl. Sci. 43, 5564–5578 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  28. O. Kolebaje, O. Popoola, M. Khan, O. Oyewande, An epidemiological approach to insurgent population modeling with the Atangana–Baleanu fractional derivative. Chaos Solitons Fractals 139, 1–10 (2020)

    MathSciNet  MATH  Google Scholar 

  29. S. Kumar, S. Ghosh, B. Samet, E. Goufo, An analysis for heat equations arises in diffusion process using new Yang-Abdel-Aty-Cattani fractional operator. Math. Methods Appl. Sci. 43, 6062–6080 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  30. P. Veeresha, D. Prakasha, S. Kumar, A fractional model for propagation of classical optical solitons by using nonsingular derivative. Math. Methods Appl. Sci. 43, 1–11 (2020)

    Google Scholar 

  31. Y. Wang, H. Jahanshahi, S. Bekiros, F. Bezzina, Y. Chu, A. Aly, Deep recurrent neural networks with finite-time terminal sliding mode control for a chaotic fractional-order financial system with market confidence. Chaos Solitons Fractals 146, 1–11 (2021)

    MathSciNet  MATH  Google Scholar 

  32. S. Wang, S. He, A. Yousefpour, H. Jahanshahi, R. Repnik, M. Perc, Chaos and complexity in a fractional-order financial system with time delays. Chaos Solitons Fractals 131, 109521 (2020)

    MathSciNet  MATH  Google Scholar 

  33. L. Chen, H. Yin, T. Huang, L. Yuan, S. Zheng, L. Yin, Chaos in fractional-order discrete neural networks with application to image encryption. Neural Netw. 125, 174–184 (2020)

    Google Scholar 

  34. A. Yousefpour, H. Jahanshahi, J.M. Munoz-Pacheco, S. Bekiros, Z. Wei, A fractional-order hyper-chaotic economic system with transient chaos. Chaos Solitons Fractals 130, 109400 (2020)

    MathSciNet  MATH  Google Scholar 

  35. M.A. Akinlar, F. Tchier, M. Inc, Chaos control and solutions of fractional-order Malkus waterwheel model. Chaos Solitons Fractals 135, 109746 (2020)

    MathSciNet  MATH  Google Scholar 

  36. S. Kumar, R. Kumar, M. Osman, B. Samet, A wavelet based numerical scheme for fractional order SEIR epidemic of measles by using Genocchi polynomials. Numer. Methods Partial Differ. Equ. 37, 1250–1268 (2021)

    MathSciNet  Google Scholar 

  37. S. Kumar, S. Ghosh, R. Kumar, M. Jleli, A fractional model for population dynamics of two interacting species by using spectral and Hermite wavelets methods. Numer. Methods Partial Differ. Equ. 37, 1652–1672 (2021)

    MathSciNet  Google Scholar 

  38. Y. Chu, S. Bekiros, E. Zambrano-Serrano, O. Orozco-Lopez, S. Lahmiri, H. Jahanshahi, A. Aly, Artificial macro-economics: a chaotic discrete-time fractional-order laboratory model. Chaos Solitons Fractals 145, 1–12 (2021)

    MathSciNet  MATH  Google Scholar 

  39. H. Jahanshahi, K. Rajagopal, A. Akgul, N. Sari, H. Namazi, S. Jafari, Complete analysis and engineering applications of a megastable nonlinear oscillator. J. Comput. Appl. Math. 107, 126–136 (2018)

    Google Scholar 

  40. M. Khan, A. Atangana, E. Alzahrani, The dynamics of COVID-19 with quarantined and isolation. Adv. Differ. Equ. 1, 1–22 (2020)

    MathSciNet  MATH  Google Scholar 

  41. E. Goufo, S. Kumar, S. Mugisha, Similarities in a fifth-order evolution equation with and with no singular kernel. Chaos Solitons Fractals 130, 1–10 (2020)

    MathSciNet  MATH  Google Scholar 

  42. B. Ghanbari, S. Kumar, R. Kumar, A study of behaviour for immune and tumor cells in immunogenetic tumour model with non-singular fractional derivative. Chaos Solitons Fractals 133, 1–10 (2020)

    MathSciNet  MATH  Google Scholar 

  43. H. Jahanshahi, D. Chen, Y. Chu, J. Gomez-Aguilar, A. Aly, Enhancement of the performance of nonlinear vibration energy harvesters by exploiting secondary resonances in multi-frequency excitations. Eur. Phys. J. Plus 136, 1–22 (2021)

    Google Scholar 

  44. J. Jia, X. Huang, Y. Li, J. Cao, A. Alsaedi, Global stabilization of fractional-order memristor-based neural networks with time delay. IEEE Trans. Neural Netw. Learn. Syst. 31(3), 997–1009 (2020)

    MathSciNet  Google Scholar 

  45. R. Rakkiyappan, R. Sivaranjani, G. Velmurugan, J. Cao, Analysis of global O(t-\(\alpha \)) stability and global asymptotical periodicity for a class of fractional-order complex-valued neural networks with time varying delays. Neural Netw. 77, 51–69 (2016). https://doi.org/10.1016/j.neunet.2016.01.007

    Article  MATH  Google Scholar 

  46. Z. Yang, J. Zhang, Global stabilization of fractional-order bidirectional associative memory neural networks with mixed time delays via adaptive feedback control. Int. J. Comput. Math. (2019). https://doi.org/10.1080/00207160.2019.1677897

    Article  Google Scholar 

  47. B. Meng, Z. Wang, Z. Wang, Adaptive sliding mode control for a class of uncertain nonlinear fractional-order Hopfield neural networks. AIP Adv. (2019). https://doi.org/10.1063/1.5097374

    Article  Google Scholar 

  48. M. Syed Ali, G. Narayanan, Z. Orman, V. Shekher, S. Arik, Finite time stability analysis of fractional-order complex-valued memristive neural networks with proportional delays. Neural Process. Lett. 51(1), 407–426 (2020). https://doi.org/10.1007/s11063-019-10097-7

    Article  Google Scholar 

  49. X. You, Q. Song, Z. Zhao, Existence and finite-time stability of discrete fractional-order complex-valued neural networks with time delays. Neural Netw. 123, 248–260 (2020). https://doi.org/10.1016/j.neunet.2019.12.012

    Article  MATH  Google Scholar 

  50. C.A. Tavares, T.M. Santos, N.H. Lemes, J.P. dos Santos, J.C. Ferreira, J.P. Braga, Solving ill-posed problems faster using fractional-order Hopfield neural network. J. Comput. Appl. Math. 381, 112984 (2020). https://doi.org/10.1016/j.cam.2020.112984

    Article  MathSciNet  MATH  Google Scholar 

  51. M. Hui, C. Wei, J. Zhang, H.H.C. Iu, N. Luo, R. Yao, L. Bai, Finite-time synchronization of memristor-based fractional order Cohen-Grossberg neural networks. IEEE Access 8, 73698–73713 (2020)

    Google Scholar 

  52. M. Zheng, L. Li, H. Peng, J. Xiao, Y. Yang, H. Zhao, Finite-time projective synchronization of memristor-based delay fractional-order neural networks. Nonlinear Dyn. 89(4), 2641–2655 (2017)

    MathSciNet  MATH  Google Scholar 

  53. W. Zhang, H. Zhang, J. Cao, H. Zhang, D. Chen, Synchronization of delayed fractional-order complex-valued neural networks with leakage delay. Physica A 556, 61573096 (2020). https://doi.org/10.1016/j.physa.2020.124710

    Article  MathSciNet  MATH  Google Scholar 

  54. H.L. Li, L. Zhang, C. Hu, H. Jiang, J. Cao, Global Mittag-Leffler synchronization of fractional-order delayed quaternion-valued neural networks: Direct quaternion approach. Appl. Math. Comput. 373, 125020 (2020)

    MathSciNet  MATH  Google Scholar 

  55. M. Zheng, L. Li, H. Peng, J. Xiao, Y. Yang, Y. Zhang, H. Zhao, Finite-time stability and synchronization of memristor-based fractional-order fuzzy cellular neural networks. Commun. Nonlinear Sci. Numer. Simul. 59, 272–291 (2018). https://doi.org/10.1016/j.cnsns.2017.11.025

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. J. Zamora Esquivel, A. Cruz Vargas, R. Camacho Perez, P. Lopez Meyer, H. Cordourier, O. Tickoo, Adaptive activation functions using fractional calculus, Proceedings 2019 International Conference on Computer Vision Workshop, ICCVW 2019, pp. 2006–2013 (2019)

  57. L. M. Pecora T. L. Carroll, Heagy-1997-Fund. of Synchronization in chaotic systems.pdf.pdf(1990). http://scitation.aip.org/docserver/fulltext/aip/journal/chaos/7/4/1.166278.pdf?expires=1405959266&id=id&accname=2101255&checksum=1B971CA8B24F6968F1A524031940752D

  58. K. Rajagopal, M. Tuna, A. Karthikeyan, İ Koyuncu, P. Duraisamy, A. Akgul, Dynamical analysis, sliding mode synchronization of a fractional-order memristor Hopfield neural network with parameter uncertainties and its non-fractional-order fpga implementation. Eur. Phys. J. Spec. Top. 228(10), 2065–2080 (2019)

    Google Scholar 

  59. B. Meng, X. Wang, Adaptive synchronization for uncertain delayed fractional-order Hopfield neural networks via fractional-order sliding mode control. Math. Probl. Eng. (2018). https://doi.org/10.1155/2018/1603629

    Article  MathSciNet  MATH  Google Scholar 

  60. L. Chen, H. Yin, T. Huang, L. Yuan, S. Zheng, L. Yin, Chaos in fractional-order discrete neural networks with application to image encryption. Neural Netw. 125, 174–184 (2020). https://doi.org/10.1016/j.neunet.2020.02.008

    Article  Google Scholar 

  61. C. Ma, J. Mou, F. Yang, H. Yan, A fractional-order Hopfield neural network chaotic system and its circuit realization. Eur. Phys. J. Plus 135(1), 100 (2020)

    ADS  Google Scholar 

  62. Z. Yan, Y. Liu, X. Huang, J. Zhou, H. Shen, Mixed \(\cal{H}\infty \) and \(\cal{L}\) 2-\(\cal{L}\infty \) anti-synchronization control for chaotic delayed recurrent neural networks. Int. J. Control Autom. Syst. 17(12), 3158–3169 (2019)

    Google Scholar 

  63. I. Wedekind, U. Parlitz, Experimental observation of synchronization and anti-synchronization of chaotic low-frequency-fluctuations in external cavity semiconductor lasers. Int. J. Bifurcat. Chaos Appl. Sci. Eng. 11(4), 1141–1147 (2001)

    Google Scholar 

  64. C.M. Kim, S. Rim, W.H. Kye, J.W. Ryu, Y.J. Park, Anti-synchronization of chaotic oscillators. Phys. Lett. Sect. A 320(1), 39–46 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  65. J. Yu, C. Hu, H. Jiang, X. Fan, Projective synchronization for fractional neural networks. Neural Netw. 49, 87–95 (2014). https://doi.org/10.1016/j.neunet.2013.10.002

    Article  MATH  Google Scholar 

  66. Y. Gu, Y. Yu, H. Wang, Projective synchronization for fractional-order memristor-based neural networks with time delays. Neural Comput. Appl. 31(10), 6039–6054 (2019). https://doi.org/10.1007/s00521-018-3391-7

    Article  Google Scholar 

  67. J.V.D.C. Sousa, E.C. de Oliveira. On the local M-derivative (2017). arXiv:1704.08186

  68. J.V.D.C. Sousa, E.C. de Oliveira. A new truncated M-fractional derivative type unifying some fractional derivative types with classical properties (2017). arXiv:1704.08187

  69. S. Salahshour, A. Ahmadian, S. Abbasbandy, D. Baleanu, M-fractional derivative under interval uncertainty: theory, properties and applications. Chaos Solitons Fractals 117, 84–93 (2018). https://doi.org/10.1016/j.chaos.2018.10.002

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. E.D. Reyes-Téllez, A. Parrales, G.E. Ramírez-Ramos, J.A. Hernández, G. Urquiza, M.I. Heredia, F.Z. Sierra, Analysis of transfer functions and normalizations in an ANN model that predicts the transport of energy in a parabolic trough solar collector. Desalin. Water Treat. 200, 23–41 (2020)

    Google Scholar 

  71. A. Atangana, J.F. Gómez-Aguilar, Decolonisation of fractional calculus rules: breaking commutativity and associativity to capture more natural phenomena. Eur. Phys. J. Plus 133(4), 1–22 (2018)

  72. G.A. Gottwald, I. Melbourne. The 0-1 test for chaos: a review. Chaos Detect. Predict. 1, 221–247 (2016)

Download references

Acknowledgements

Edumis Viera Martin acknowledges the support provided by CONACyT through the assignment doctoral fellowship. Jesús Emmanuel Solís Pérez acknowledges the support provided by CONACyT through the assignment post-doctoral fellowship and SNI-CONACyT. José Francisco Gómez Aguilar acknowledges the support provided by CONACyT: cátedras CONACyT para jóvenes investigadores 2014 and SNI-CONACyT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Gómez-Aguilar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viera-Martin, E., Gómez-Aguilar, J.F., Solís-Pérez, J.E. et al. Anti-synchronization of a M-Hopfield neural network with generalized hyperbolic tangent activation function. Eur. Phys. J. Spec. Top. 231, 1801–1814 (2022). https://doi.org/10.1140/epjs/s11734-022-00456-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00456-2

Navigation