Skip to main content

Advertisement

Log in

Toward a physics description of consciousness

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

This minireview is meant to provide a broad overview of the most basic interpretations of consciousness and of the potential links to fundamental physics, as a complement to the large number of more detailed experimental and theoretical studies. In the spirit of previous ideas in the neuroscience community, but with a more physics-oriented perspective, we begin with the interpretation that consciousness is the collective excitation of a brainwide web of neural cells (where the phrases of other authors have been combined). This picture is inspired by the fact that, in all major areas of physics, a collective excitation has just as much physical reality as a particle or other localized object. The brainwide web extends into those regions (neuronal and glial networks) where processed information is received from the senses, memories, etc. (emerging out of unconscious processes in prior networks). It unifies those regions (plus motor control regions) via the vast complexity of the neural interactions that it spans. At the most fundamental level, all physical phenomena result from excitation of quantum fields (since, in current physics, these fields are the bedrock of reality). It follows that, in the present picture, quantum physics solves the old combination (or binding) problem of consciousness, since the experience of consciousness requires coherent excitation of only a single hybrid electron-electromagnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Jerbi et al., Exploring the electrophysiological correlates of the default-mode network with intracerebral EEG. Front. Syst. Neurosci. (2010). https://doi.org/10.3389/fnsys.2010.00027

    Article  Google Scholar 

  2. D. Cohen, Magnetoencephalography: evidence of magnetic fields produced by alpha-rhythm currents. Science 161, 784–6 (1968). https://doi.org/10.1126/science.161.3843.784

    Article  ADS  Google Scholar 

  3. N. Logothetis, What we can do and what we cannot do with fMRI? Nature 453, 869–878 (2008). https://doi.org/10.1038/nature06976

    Article  ADS  Google Scholar 

  4. D.M. Cole et al., Advances and pitfalls in the analysis and interpretation of resting-state FMRI data. Front. Syst. Neurosci. 4, 8 (2010). https://doi.org/10.3389/fnsys.2010.00008

    Article  Google Scholar 

  5. G.H. Glover, Overview of Functional Magnetic Resonance Imaging. Neurosurg. Clin. N. Am. 22, 133–139 (2011). https://doi.org/10.1016/j.nec.2010.11.001

    Article  Google Scholar 

  6. M.P. van den Heuvel, H.E. Hulshoff Pol, Exploring the brain network: a review on resting-state fMRI functional connectivity. J. Euro. Neur. 20, 519–534 (2010). https://doi.org/10.1016/j.euroneuro.2010.03.008

  7. D.J. Lurie et al., Questions and controversies in the study of time-varying functional connectivity in resting fMRI. Neuroscience 4, 30–69 (2019)

    Google Scholar 

  8. A. Alavi, L.J. Hirsch, Studies of central nervous system disorders with single photon emission computed tomography and positron emission tomography. Semin. Nucl. Med. 21, 58–81 (1991)

    Article  Google Scholar 

  9. J.M. Hooker, R.E. Carson, Human positron emission tomography imaging. Ann. Rev. Biomed. Eng. 21, 551–581 (2019)

    Article  Google Scholar 

  10. M.M. Ter-Pogossian et al., A positron emission transaxial tomograph for nuclear imaging (PET). Radiology 114, 89–98 (1975)

    Article  Google Scholar 

  11. M.E. Phelps et al., Application of annihilation coincidence detection to transaxial reconstruction tomography. J. Nucl. Med. 16, 210–224 (1975)

    Google Scholar 

  12. Y. Hoshi, Functional near-infrared spectroscopy: current status and future prospects. J. Biomed. Opt. 12, 062106 (2007)

    Article  ADS  Google Scholar 

  13. Y. Hoshi, Towards the next generation of near-infrared spectroscopy. Phil. Trans. R. Soc. A 369, 4425–4439 (2011). https://doi.org/10.1098/rsta.2011.0262

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. L. Nagels-Coune et al., Brain-based binary communication using spatiotemporal features of fNIRS responses. Front. Hum. Neurosci. 14, 113 (2020). https://doi.org/10.3389/fnhum.2020.00113

    Article  Google Scholar 

  15. Y. Yamada et al., Time-domain near-infrared spectroscopy and imaging: a review. Appl. Sci. 9, 1127 (2019). https://doi.org/10.3390/app9061127

    Article  Google Scholar 

  16. F. Lange, T. Ilias, Clinical brain monitoring with time domain NIRS: a review and future perspectives. Appl. Sci. 9, 1612 (2019). https://doi.org/10.3390/app9081612

    Article  Google Scholar 

  17. J. Suia et al., A review of multivariate methods for multimodal fusion of brain imaging data. J. Neurosci. Methods 204, 68–81 (2012)

    Article  Google Scholar 

  18. J.N.D. Kerr, W. Denk, Imaging in vivo: watching the brain in action. Nat. Rev. Neurosci. 9, 195 (2008). https://doi.org/10.1038/nrn2338

    Article  Google Scholar 

  19. K.M. Tye, K. Deisseroth, Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat. Rev. Neurosci. 13, 251 (2012). https://doi.org/10.1038/nrn3171

    Article  Google Scholar 

  20. R. Ranjan et al., A kinetic map of the homomeric voltage-gated potassium channel (Kv) family. Front. Cell. Neurosci. 13, 358 (2019). https://doi.org/10.3389/fncel.2019.00358

    Article  Google Scholar 

  21. N. Spruston, Pyramidal neurons: dendritic structure and synaptic integration. Nat. Rev. Neurosci. 9, 206 (2008). https://doi.org/10.1038/nrn2286

    Article  Google Scholar 

  22. D. Murzin et al., Ultrasensitive magnetic field sensors for biomedical applications. Sensors 20, 1569 (2020). https://doi.org/10.3390/s20061569

    Article  ADS  Google Scholar 

  23. M.E. Raichle, Behind the scenes of functional brain imaging. PNAS USA 95, 765–772 (1998). https://doi.org/10.1073/pnas.95.3.765

    Article  ADS  Google Scholar 

  24. A.L. Alexander et al., Diffusion tensor imaging of the brain. Neurotherapeutics 4, 316–329 (2007)

    Article  Google Scholar 

  25. A.T. Eggebrecht et al., Mapping distributed brain function and networks with diffuse optical tomography. Nat. Photonics 8, 448–454 (2014)

    Article  ADS  Google Scholar 

  26. X.-J. Wang, Neurophysiological and computational principles of cortical rhythms in cognition. Physiol. Rev. 90, 1195–1268 (2010). https://doi.org/10.1152/physrev.00035.2008

    Article  Google Scholar 

  27. D. Pinotsis et al., Neural masses and fields: modeling the dynamics of brain activity. Front. Comput. Neurosci. 8, 149 (2014). https://doi.org/10.3389/fncom.2014.00149

    Article  Google Scholar 

  28. P.A. Robinson, Physical brain connectomics. Phys. Rev. E 99, 012421 (2019)

    Article  ADS  Google Scholar 

  29. D.D. Georgiev, Inner privacy of conscious experiences and quantum information. BioSystems 187, 104051 (2020). https://doi.org/10.1016/j.biosystems.2019.104051

    Article  Google Scholar 

  30. D.D. Georgiev, Quantum information theoretic approach to the mind-brain problem. Progress Biophys. Mol. Biol. (2020). https://doi.org/10.1016/j.pbiomolbio.2020.08.002

    Article  Google Scholar 

  31. D.D. Georgiev, Quantum information and consciousness: a gentle introduction (CRC Press, Boca Raton, 2017). https://doi.org/10.1201/9780203732519

    Book  MATH  Google Scholar 

  32. S. Dehaene, Consciousness and the brain (Penguin Books, New York, 2014)

    MATH  Google Scholar 

  33. S. Dehaene, M. Kerszberg, J.P. Changeux, A neuronal model of a global workspace in effortful cognitive tasks. PNAS USA 95, 14529–14534 (1998)

    Article  ADS  Google Scholar 

  34. S. Dehaene, L. Naccache, Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework. Cognition 79, 1–37 (2001)

    Article  Google Scholar 

  35. Stanislas Dehaene, How we learn—Why brains learn better than any machine... for now (Viking, USA 2020)

  36. B.J. Baars, Global workspace theory of consciousness: toward a cognitive neuroscience of human experience? Progress. Brain Res. 150, 45–53 (1988)

    Article  Google Scholar 

  37. D. Peter, L.F. Abbott, Theoretical neuroscience—computational and mathematical modeling of neural systems (MIT Press, Cambridge, 2001)

    MATH  Google Scholar 

  38. C. Koch, The quest for consciousness: a neuroscientific approach (Roberts and Company, Englewood, 2004)

    Google Scholar 

  39. C. Koch, Consciousness: confessions of a romantic reductionist (MIT Press, Cambridge, 2017)

    Google Scholar 

  40. F. Mormann, C. Koch, Neural correlates of consciousness. Scholarpedia 2, 1740 (2007). https://doi.org/10.4249/scholarpedia.1740. revision number 137561 accessed 22/06/2020

    Article  ADS  Google Scholar 

  41. G. Tononi, C. Koch, The neural correlates of consciousness—-an update. Ann. N.Y. Acad. Sci. 1124, 239–261 (2008)

    Article  ADS  Google Scholar 

  42. G. Tononi, An information integration theory of consciousness. BMC Neurosci. 5, 42 (2004). https://doi.org/10.1186/1471-2202.5-42

    Article  Google Scholar 

  43. G. Tononi, G.M. Edelman, Consciousness and complexity. Science 282, 1846–1851 (1998)

    Article  Google Scholar 

  44. A.B. Satpute, K. Lindquist, The Default Mode Network—a role in discrete emotion. Trends Cogn. Sci. 23, 851–864 (2019)

    Article  Google Scholar 

  45. F. Varela et al., The brainweb: phase synchronization and large-scale integration. Nat. Rev. Neuro. 2, 229–239 (2001)

    Article  Google Scholar 

  46. M.W. Cole, G. Repovs, A. Anticevic, The frontoparietal control system: a central role in mental health. The Neuroscientist 20, 1–13 (2014). https://doi.org/10.1177/1073858414525995

    Article  Google Scholar 

  47. P. Fries, A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn. Sci. 9, 474–480 (2005). https://doi.org/10.1016/j.tics.2005.08.011

    Article  Google Scholar 

  48. J. Sergent, S. Ohta, B. MacDonald, Functional neuroanatomy of face and object processing. A positron emission tomography study. Brain 115, 15–36 (1992). https://doi.org/10.1093/brain/115.1.15

    Article  Google Scholar 

  49. N. Kanwisher, J. McDermott, M.M. Chun, The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302–4311 (1997). https://doi.org/10.1523/JNEUROSCI.17-11-04302.1997

    Article  Google Scholar 

  50. A.J. Barkovich, Concepts of myelin and myelination in neuroradiology. Am. J. Neuroradiol. 21, 1099–1109 (2000)

    Google Scholar 

  51. A.-K. Bouzier-Sore, L. Pellerin, Unraveling the complex metabolic nature of astrocytes Front. Cell Neuro 7, 1–13 (2013). https://doi.org/10.3389/fncel.2013.00179

    Article  Google Scholar 

  52. R. Douglas Fields, White Matter Matters (Scientific American March, 2008), pp. 54–61

  53. R. Douglas Fields, The other brain—from dementia to schizophrenia, how new discoveries about the brain are revolutionizing medicine and science (Simon and Schuster, New York, 2009)

  54. C.M. Filley, White matter in cognitive neuroscience—advances in diffusion tensor imaging and its applications. Chapter: White Matter and Behavioral Neurology (New York Academy of Sciences, New York 2005) pp. 162–183

  55. C.M. Filley, The behavioral neurology of white matter, 2nd edn. (Oxford University Press, Oxford, 2012)

    Book  Google Scholar 

  56. T. Deemyad et al., Astrocytes integrate and drive action potential firing in inhibitory subnetworks. Nat. Commun. 9, 4336 (2018). https://doi.org/10.1038/s41467-018-06338-3

    Article  ADS  Google Scholar 

  57. R. Rasmussen et al., Interstitial ions: a key regulator of state-dependent neural activity? Prog. Neurobiol. 193, 101802 (2020)

    Article  Google Scholar 

  58. R. Refaeli, I. Goshen, Front. Young Minds 8, 1–8 (2020)

    Article  Google Scholar 

  59. N. Vardjan, R. Zorec, Noradrenergic signaling and astroglia (Academic Press, London, 2017)

    Google Scholar 

  60. M. Zonta et al., Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat. Neuro. 6, 43–50 (2003). https://doi.org/10.1038/nn980

    Article  Google Scholar 

  61. Y. Buskila et al., Generating brain waves, the power of astrocytes. Front. Neurosci. 13, 1125 (2019). https://doi.org/10.3389/fnins.2019.01125

    Article  Google Scholar 

  62. J.L. Morgan, J.W. Lichtman, Why not connectomics? Nat. Methods 10, 494–500 (2013). https://doi.org/10.1038/nmeth.2480

    Article  Google Scholar 

  63. D.D. Georgiev et al., Computational capacity of pyramidal neurons in the cerebral cortex. Brain Res. 1748, 147069 (2020). https://doi.org/10.1016/j.brainres.2020.147069

    Article  Google Scholar 

  64. M.E. Peskin, D.V. Schroeder, An introduction to quantum field theory (Perseus, 1995)

  65. S. Lidström, R.E. Allen, Consciousness as the collective excitation of a brainwide web—understanding consciousness from below quantum fields to above neuronal networks. J. Phys: Conf. Ser. 1275, 012021 (2019). https://doi.org/10.1088/1742-6596/1275/1/012021

    Article  Google Scholar 

  66. S. Lidström, R.E. Allen, in G. Alexander et al., The sounds of science—a symphony for many instruments and voices. Phys. Scr. 95, 062501 (2020). https://doi.org/10.1088/1402-4896/ab7a35

  67. M. Tegmark, The importance of quantum decoherence in brain processes. Phys. Rev. E 61, 4194–4206 (2000). https://doi.org/10.1103/PhysRevE.61.4194

  68. J.I. Leckenby et al., Imaging peripheral nerve regeneration: a new technique for 3D visualization of axonal behavior. J. Surg. Res. 242, 207–213 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzy Lidström.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lidström, S., Allen, R.E. Toward a physics description of consciousness. Eur. Phys. J. Spec. Top. 230, 1081–1087 (2021). https://doi.org/10.1140/epjs/s11734-021-00097-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00097-x

Navigation