Skip to main content
Log in

Quantum Theory and the Nature of Consciousness

  • Published:
Foundations of Science Aims and scope Submit manuscript

Abstract

Our interest focusses on the idea, that consciousness is a powerful acting entity. Up to now there does not exist a scientific concept for this idea. This is not due to problems within the field of psychology or brain research, but rather in resisting theories of modern physics. That is, why we have to search for a solution in the field of physics. A solution can be found in a new understanding of the basics of physical theory. That could be given by abstract and absolute quantum bits of information (AQI bits). To avoid the popular misunderstanding of “information” as “meaningful” it was necessary to find a new word for the free-of-meaning AQI bits: the AQI bits establish a quantum pre-structure termed “Protyposis” (Greek: “pre-formation”), out of which real objects can be formed, starting from energetical and material elementary particles. The Protyposis AQI bits provide a pre-structure for all entities in natural sciences. They are the basic entities, whereof the physical nature of the brain, on the one hand, and the mental nature of consciousness, on the other hand, were formed during the cosmological and the following biological evolution. A deeper understanding of quantum structures may help to overcome the resistance against quantum theory in the field of brain research and consciousness. The key for an understanding is the concept of Protyposis, which means an abstract quantum information free of any definite meaning. With the AQI bits of the Protyposis, both, massless and massive quantum particles can be constructed. Even quantum information with special meanings, in example grammatically formulated thoughts, eventually could be explained. As long as the fundamental basis of quantum theory is misunderstood as being formed by a manifold of some small objects like atoms, quarks, or strings, the problem of understanding consciousness has no solution. If instead we understand quantum theory as based on truly simple quantum structures, there would be no longer fundamental problems for an understanding of consciousness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Grossberg (2013), p. 2.

  2. Grossberg (2013), p. 6.

  3. Grossberg (2013), p. 15.

  4. Görnitz and Görnitz (2016).

  5. Coward and Sun (2007), p. 947.

  6. Coward and Sun (2007), p. 953.

  7. Coward and Sun (2007), p. 953.

  8. http://www.zeit.de/2013/44/christof-koch-bewusstsein-hirnforschung.

  9. Roth G. Geist und Bewusstsein als physikalische Zustände. In: Dresler M. (Hrsg) Kognitive Leistungen. Intelligenz und mentale Fähigkeiten im Spiegel der Neurowissenschaften. Heidelberg: Spektrum Springer; 2011: 172.

  10. Eckoldt, S. 20 f.

  11. Damasio (2011), p. 14.

  12. Chalmers (1995b), p. 311.

  13. Chalmers (1995b), p. 332.

  14. Cf. Görnitz, Th. (1999).

  15. Zeh (2012), p. 51.

  16. Feynman et al. (1966), pp. 1–14.

  17. Hawking (1988), p. 77.

  18. Whereas the square of all real numbers is positive, the square of an imaginary quantity is negative. Complex numbers can be represented by drawing the axis of the imaginary numbers perpendicular to the axis of the real numbers. This makes it clear that a complex dimension can be represented by 2 real dimensions. More elaborated arguments for use of complex numbers in quantum theory are given in Görnitz and Görnitz (2002), Kap 5.2.2 and Görnitz and Görnitz (2016), pp. 471–473. In the space with two complex dimensions the Protyposis uses the symmetry group U(1) × SU(2). This group has four real parameters, which will be interpreted as representations for the coordinates of space and time. In quantum information theory the vectors of the state space of a qubit are reduced to norm 1 and further on for a single qubit a phase is declared as not essential. Therefore in this context only the real 2-dimensional Bloch sphere is seen as crucial.

  19. Mikulecky (1999).

  20. Werner (2010).

  21. http://home.cern/about/physics vom 20.4.2016.

  22. http://home.cern/about/physics/standard-model vom 20.4.2016.

  23. http://www.desy.de/research/particle_physics/index_eng.html vom 20.4.2016.

  24. Nature 532, 284–285 (21 April 2016) doi:10.1038/532284d.

  25. This term was suggested to us by the Classical philologist Roland Schüßler of Frankfurt University: The Greek term Protyposis stands therefore for something that can be formed into matter, energy and also into meaningful information.

  26. Weizsäcker, C F v: Komplementarität und Logik, Die Naturwissenschaften 42 (19) (1955), S. 521–529 and 42 (20) (1955), S. 545–555. Die Quantentheorie der einfachen Alternative (Komplementarität und Logik II), Zeitschrift für Naturforschung 13a (1958), S. 245–253., Scheibe, E, Süßmann, G:, Weizsäcker, C F v: Komplementarität und Logik III: Mehrfache Quantelung, Zeitschrift für Naturforschung 13a (9) (Scheibe et al. 1958), S. 705–721.

  27. See Castell, L, Drieschner, M, Weizsäcker, C F v (Eds.): Quantum Theory and the Structures of Time and Space 4. Papers presented at a conference held in Tutzing July 1980, Hanser, München (1981).

  28. Kiefer, C: Weizsäckers Zeitbegriff aus heutiger Sicht, in: Acta Historica Leopoldina, Nr. 63, (2014) S. 179: » Das Weizsäckersche Ur entspricht dabei dem üblichen Bit; die Wortwahl soll aber auf den fundamentalen Charakter dieser Alternativen verweisen. Einen ähnlichen Ansatz verfolgt John Archibald Wheeler mit seiner Idee des It from Bit, mit der er die gesamte Physik auf Uralternativen zurückführen will, ohne dabei freilich auf CFvW in irgendeiner Weise Bezug zu nehmen (Wheeler 1990).«

  29. Görnitz et al. (1992), Görnitz and Schomäcker (2012).

  30. Görnitz (2011a, b) (1).

  31. Görnitz and Schomäcker (2016).

  32. Günther, p. 20.

  33. Günther, p. 22, quoted Wiener, p. 155.

  34. Cf. Görnitz and Görnitz (2002, 2006, 2013).

  35. Cf. Görnitz and Görnitz (2008).

  36. Görnitz and Görnitz (2006), p. 285, 322, Self-reflection means that a part is able (in principle) to map one-to-one the whole. This necessitates a set that is possibly infinite. Whereas all classical information memories are finite, even a simple quantum object, such as a hydrogen atom, has an infinite state space. Quantum systems are essential for another reason: Only via quantum physics the distinction between hard- and software can be overcome. This point is essential crucial in any biological information processing. See Görnitz and Görnitz (2016), ch. 5.4.9.

  37. Görnitz (2011b).

  38. Pripram (1975).

  39. Koch (2005), Koch et al. (2013).

  40. Cf. Koch and Greenfield (2007).

  41. cf. Werner (2011).

  42. Locally energy and matter are strictly conserved; globally, i.e. in cosmology, this is not valid.

  43. Müller and Kaupp (1998).

  44. OPD-1, p. 67.

  45. OPD-1, p. 67.

  46. Hoffmann and Hochapfel (1987) p. 168.

  47. Pöppel (2004), p. 298.

  48. Mathematically speaking, the quantum state turns into a sum over the amount of eigenstates on the question, therefore of sensible answers to the question.

  49. cf. Görnitz and Görnitz (2008), p. 273 ff.

  50. Cardon (2006), p. 245.

  51. Cardon (2006), p. 266.

  52. Some philosophers have the tendency to classify the protyposis concept as “panpsychism”. The AQI bits are neither matter, nor energy and not even mind. However, they are the foundation, the basis for all these entities. The term “psychism”, having a great proximity to “mind”, should not be applied to the protyposis outside of a living being—even if a qubit looks much more like our thoughts then our body.

References

  • Cardon, A. (2006). Artificial consciousness, artificial emotions, and autonomous robots. Cognitive Processing, 7, 245–267.

    Article  Google Scholar 

  • Castell, L., Drieschner, M., & Weizsäcker, C. F. V. (Eds.) (1981): Quantum theory and the structures of time and space 4. Papers presented at a conference held in Tutzing July 1980, München: Hanser.

  • Chalmers, D. J. (1995a). Facing up to the problem of consciousness. Journal of Consciousness Studies, 2, 200–219.

    Google Scholar 

  • Chalmers, D. J. (1995b). The conscious mind (p. 95064). Santa Cruz, CA: Department of Philosophy, University of California, Santa Cruz.

    Google Scholar 

  • Coward, L. A., & Sun, R. (2007). Hierarchical approaches to understanding consciousness. Neural Networks, 20, 947–954.

    Article  Google Scholar 

  • Damasio, A. (2011). Self comes to mind: Constructing the conscious brain (p. 14). New York: Random House.

    Google Scholar 

  • Eckoldt, M. (2013). Kann das Gehirn das Gehirn verstehen?—Gespräche über Hirnforschung und die Grenzen unserer Erkenntnis (p. 20). Heidelberg: Carl-Auer Verlag.

    Google Scholar 

  • Feynman, R. P., Leighton, R. B., & Sands, M. (1966). The Feynman lectures on physics: Quantum mechanics (pp. 1–10). Reading, MA: Addison-Wesley.

    Google Scholar 

  • Finkelstein, D. (1966). Space-time-code. Physical Review, 184, 1261–1271.

    Article  Google Scholar 

  • Görnitz, T. (1999, 2006). Quanten sind andersDie verborgene Einheit der Welt. Heidelberg: Spektrum.

  • Görnitz, T. (2011a). Deriving general relativity from considerations on quantum information. Advanced Science Letters, 4, 577–585.

    Article  Google Scholar 

  • Görnitz, T. (2011b). The meaning of quantum theory—Reinterpreting the Copenhagen interpretation. Advanced Science Letters, 4, 3727–3734.

    Article  Google Scholar 

  • Görnitz, T., & Görnitz, B. (2002, 2006, 2013). Der kreative Kosmos. Heidelberg: Spektrum.

  • Görnitz, T., & Görnitz, B. (2008, 2009). Die Evolution des Geistigen. Göttingen: Vandenhoeck & Ruprecht.

  • Görnitz, B., & Görnitz, T. (2014). Das Geistige im Blickfeld der Naturwissenschaft—Bewusstsein und Materie als spezielle Formen der Quanteninformation. In J. Weinzirl & P. Heusser (Eds.), Was ist Geist (pp. 11–44). Königshausen & Neumann: Würzburg.

    Google Scholar 

  • Görnitz, T., Görnitz, B. (2016). Von der Quantenphysik zum Bewusstsein-Kosmos, Geist und Materie. Heidelberg: Springer.

    Book  Google Scholar 

  • Görnitz, T., Graudenz, D., Weizsäcker, C. F., & Weizsäcker, C. F. V. (1992). Quantum field theory of binary alternatives. International Journal of Theoretical Physics, 31, 1929–1959.

  • Görnitz, T. & Schomäcker, U. (2012). Quantum particles from quantum information, Journal of Physics: Conference Series, 380, 012025. http://iopscience.iop.org/1742-6596/380/1/012025. doi:10.1088/1742-6596/380/1/012025.

  • Görnitz, T., & Schomäcker, U. (2016). The structures of interactions—How to explain the gauge groups U(1), SU(2) and SU(3). Foundations of Science. doi:10.1007/s10699-016-9507-6.

    Google Scholar 

  • Grossberg, St. (2013). Adaptive resonance theory: How a brain learns to consciously attend, learn, and recognize a changing world. Neural Networks, 37, 1–47.

    Article  Google Scholar 

  • Günther, G. (1963). Das Bewußtsein der Maschinen-Eine Metaphysik der Kybernetik. Baden-Baden und Krefeld: Agis-Verlag.

    Google Scholar 

  • Hawking, St. (1988). Eine kurze Geschichte der Zeit, rororo, Rheinbeck, p77—Engl Original: A Brief History Of Time: From Big Bang To Black Holes, bantam books, New York.

  • Hoffmann, G., & Hochapfel, S. O. (1987). Einführung in die Neurosenlehre und die psychosomatische Medizin. Stuttgart: Schattauer.

    Google Scholar 

  • Kiefer, C. (2014). Weizsäckers Zeitbegriff aus heutiger Sicht. Acta Historica Leopoldina, 63, 179.

    Google Scholar 

  • Koch, C. (2005). Bewusstsein—ein neurobiologisches Rätsel (p. 378). Heidelberg: Spektrum.

    Book  Google Scholar 

  • Koch, C. et al. (2013). Spektrum d Wissenschaften, H 3: 28 ff.

  • Koch, C. Interview in www.zeit.de/2013/44/christof-koch-bewusstsein-hirnforschung.

  • Koch, C., & Greenfield, S. (2007). How does consciousness happen. Scientific American, 297(4), 76–83.

    Article  Google Scholar 

  • Mikulecky, D. C. (1999). Robert Rosen: The well posed question and its answer—Why are organisms different from machines? In Presented at the 43rd meeting of the International Society for the Systems Sciences. p. 6. [http://www.people.vcu.edu/~mikuleck/PPRISS3.html].

  • Müller, F., & Kaupp, U. B. (1998). Signaltransduktion in Sehzellen. Naturwissenschaften, 85, 49–61.

    Article  Google Scholar 

  • OPD-1. (2001). Operationalisierte psychodynamische Diagnostik: Grundlagen und Manual. Huber, Bern: Arbeitskreis zur Operationalisierung Psychodynamischer Diagnostik.

    Google Scholar 

  • Pöppel, E. (2004). Lost in time: a historical frame, elementary processing units and the 3-second window. Acta Neurobiologiae Experimentalis, 64(295–301), 298.

    Google Scholar 

  • Pripram, K. (1975). Toward a holonomic theory of perception. In S. Ertel, L. Kemmler, & M. Stadler (Eds.), Gestalttheorie in der modernen Psychologie (pp. 161–184). Darmstadt: Steinkopff.

    Chapter  Google Scholar 

  • Roth, G. (2011). Geist und Bewusstsein als physikalische Zustände. In M. Dresler (Ed.), Kognitive Leistungen (p. 172). Spektrum Springer: Intelligenz und mentale Fähigkeiten im Spiegel der Neurowissenschaften, Heidelberg.

    Google Scholar 

  • Scheibe, E., Süßmann, G., Weizsäcker, C. F. v. (1958). Komplementarität und Logik III: Mehrfache Quantelung, Zeitschrift für Naturforschung 13a (9) pp. 705–721.

  • Weizsäcker, C. F. v. (1955), Komplementarität und Logik, Die Naturwissenschaften 42 (19), pp. 521–529 & 42; (20) pp. 545–555.

  • Weizsäcker, C. F. v. (1958). Die Quantentheorie der einfachen Alternative (Komplementarität und Logik II), Zeitschrift für Naturforschung 13a, pp. 245–253.

  • Werner, E. (2010). Meaning in a quantum universe. Science, 329, 629.

    Article  Google Scholar 

  • Werner, E. (2011). Cancer networks, arXiv:1110.5865v1 [q-bio.MN] 26 Oct 2011.

  • Wheeler, J. A. (1990). Information, physics, quantum: The search for links. In W. Zurek (Ed.), Complexity, Entropy, and the Physics of Information. Addison-Wesley.

  • Wiener, N. (1948). Cybernetics, or control and communication in the animal and the machine. New York: MIT Press.

    Google Scholar 

  • Zeh, H. D. (2012). Physik ohne Realität: Tiefsinn oder Wahnsinn? Heidelberg, Berlin: Springer.

    Book  Google Scholar 

Download references

Acknowledgements

I thank very much Jochen Schirmer and Brigitte Görnitz for considerably helpful advice. I thank also the referees for helpful remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Görnitz.

Additional information

This is an extended version of a lecture given in German at the conference “Was ist Geist”, published as: Brigitte Görnitz, Thomas Görnitz: Das Geistige im Blickfeld der Naturwissenschaft—Bewusstsein und Materie als spezielle Formen der Quanteninformation, in Weinzirl, J, Heusser, P (Eds.): Was ist Geist, Würzburg: Königshausen & Neumann (2014). A comprehensive monograph is: T Görnitz, B Görnitz: Von der Quantenphysik zum Bewusstsein, Heidelberg, Springer (2016), eBook ISBN 978-3-662-49082-2, see http://www.springer.com/de/book/9783662490815.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Görnitz, T. Quantum Theory and the Nature of Consciousness. Found Sci 23, 475–510 (2018). https://doi.org/10.1007/s10699-017-9536-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10699-017-9536-9

Keywords

Navigation