Skip to main content
Log in

Molecular complex states and intersubband transitions in a quantum ring under Gaussian repulsive potential

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this work, the electronic structure and intersubband transitions of a singly ionized double-donor system in a GaAs quantum ring defined by a Gaussian-type potentials are investigated theoretically. Within the framework of the effective mass approach, energy spectrum and corresponding wave functions are obtained from the solution of the Schrödinger equation by using the two-dimensional diagonalization method. The results show that the energy spectrum and optical absorption coefficient of the ring are affected significantly by the parameters defining the confinement potential and internuclear distance. In general, we conclude that the structural parameters of quantum rings and the configuration of donor atoms can be used as tunability parameter for the electronic structure and optical response of quantum ring systems with molecular complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be made available on reasonable request. The manuscript has associated data in a data repository.

References

  1. L. Lu, W. Xie, H. Hassanabadi, Linear and nonlinear optical absorption coefficients and refractive index changes in a two-electron quantum dot. J. Appl. Phys. 109, 063108 (2011)

    Article  ADS  Google Scholar 

  2. H. Hassanabadi, G. Liu, L. Lu, Nonlinear optical rectification and the second-harmonic generation in semi-parabolic and semi-inverse squared quantum wells. Solid State Commun. 152, 1761–1766 (2012)

    Article  CAS  ADS  Google Scholar 

  3. A. Mandal, S. Sarkar, A.P. Ghosh, M. Ghosh, Analyzing total optical absorption coefficient of impurity doped quantum dots in presence of noise with special emphasis on electric field, magnetic field and confinement potential. Chem. Phys. 463, 149–158 (2015)

    Article  CAS  Google Scholar 

  4. S. Moskal, B.J. Spisak, Infuence of geometric-confnement parameters on the electronic properties of quantum ring. Acta Phys. Pol., A 112, 101–112 (2007)

    Article  CAS  ADS  Google Scholar 

  5. V. Prasad, M. Arora, Varsha, Enhancement of persistent currents and magnetic fields in a two dimensional quantum ring. Sci. Rep. 13(1), 15486 (2023)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  6. M.C. Onyeaju, J.O.A. Idiodi, A.N. Ikot, M. Solaimani, H. Hassanabadi, Linear and nonlinear optical properties in spherical quantum dots: generalized hulthén potential. Few-Body Syst. 57, 793–805 (2016)

    Article  CAS  ADS  Google Scholar 

  7. L. Mathe, C.P. Onyenegecha, A.-A. Farcas, L.-M. Pioras-Timbolmas, M. Solaimani, H. Hassanabadi, Linear and nonlinear optical properties in spherical quantum dots: Inversely quadratic Hellmann potential. Phys. Lett. A 397, 127262 (2021)

    Article  MathSciNet  CAS  Google Scholar 

  8. A. Bera, M. Ghosh, Noise-induced total optical absorption coefficient and refractive index change of impurity doped quantum dots under simultaneous influence of hydrostatic pressure and temperature. Curr. Phys. Chem. 7, 243–253 (2017)

    Article  CAS  Google Scholar 

  9. D. Bejan, C. Stan, E.C. Niculescu, Optical properties of an elliptic quantum ring: eccentricity and electric field effects. Opt. Mater. 78, 207–219 (2018)

    Article  CAS  ADS  Google Scholar 

  10. S. Viefers, P. Koskinen, P. Singha Deo, M. Manninen, Quantum rings for beginners: energy spectra and persistent currents. Physica E 21, 1–35 (2004)

    Article  ADS  Google Scholar 

  11. M. Aichinger, S.A. Chin, E. Krotscheck, E. Rasanen, Effects of geometry and impurities on quantum rings in magnetic fields. Phys. Rev. B 73, 195310 (2006)

    Article  ADS  Google Scholar 

  12. B. Szafran, J. Adamowski, S. Bednarek, Effect of the repulsive core on the exciton spectrum in a quantum ring. J. Phys. Condens. Matter 14, 73–86 (2002)

    Article  CAS  ADS  Google Scholar 

  13. T. Chwiej, B. Szafran, Pinning of electron densities in quantum rings by defects: symmetry constraints and distribution of persistent currents. Phys. Rev. B 79, 085305 (2009)

    Article  ADS  Google Scholar 

  14. J.C. Leon-Gonzales, R.G. Toscano-Negrette, J.A. Vinasco, A.L. Morales, M.E. Mora-Ramos, C.A. Duque, Influence of a non-resonant intense laser and structural defect on the electronic and optical properties of a gaasquantum ring under inversely quadratic potential. Condens. Matter 8, 52 (2023)

    Article  Google Scholar 

  15. K. Yun, W. Sheng, Impurity-related optical response in quantum ring with magnetic field. Acta Phys. Pol., A 142, 242–248 (2022)

    Article  CAS  ADS  Google Scholar 

  16. C.M. Duque, M.E. Mora-Ramos, C.A. Duque, Quantum disc plus inverse square potential. An analytical model for two-dimensional quantum rings: Study of nonlinear optical properties. Ann. Phys. 524, 327–337 (2012)

    Article  CAS  Google Scholar 

  17. Z. Barticevic, G. Fuster, M. Pacheco, Effect of an electric field on the Bohm-Aharonov oscillations in the electronic spectrum of a quantum ring. Phys. Rev. B 65, 193307 (2002)

    Article  ADS  Google Scholar 

  18. A.L. Silva Netto, C. Chesman, C. Furtado, Influence of topology in a quantum ring. Phys. Lett. A 372, 3894–3897 (2008)

    Article  CAS  ADS  Google Scholar 

  19. R.E. Acosta, A.L. Morales, C.M. Duque, M.E. Mora-Ramos, C.A. Duque, Optical absorption and refractive index changes in a semiconductor quantum ring: Electric field and donor impurity effects. Phys. Status Solidi B 253, 44–754 (2016)

    Article  Google Scholar 

  20. D. Bejan, C. Stan, Aharonov-Bohm effect in pseudo-elliptic quantum rings:influence of geometry, eccentricity and electric field. Eur. Phys. J. Plus 134, 127 (2019)

    Article  Google Scholar 

  21. B. Li, F.M. Peeters, Tunable optical Aharonov-Bohm effect in a semiconductor quantum ring. Phys. Rev. B 83, 115448 (2011)

    Article  ADS  Google Scholar 

  22. E. Rasanen, M. Aichinger, Large quantum rings in the ν > 1 quantum Hall regime. J. Phys. Condens. Matter 21, 025301 (2009)

    Article  CAS  PubMed  ADS  Google Scholar 

  23. D. Laroze, M. Barseghyan, A. Radu, A.A. Kirakosyan, Laser driven impurity states in two-dimensional quantum dots and quantum rings. Physica B 501, 1–4 (2016)

    Article  CAS  ADS  Google Scholar 

  24. J. Planelles, F. Rajadell, J.I. Climente, M. Royo, J.L. Movilla, Electronic states of laterally coupled quantum rings. J. Phys. Conf. Series 61, 936–941 (2007)

    Article  ADS  Google Scholar 

  25. B. Szafran, F.M. Peeters, Few-electron eigenstates of concentric double quantum rings. Phys. Rev. B 72, 155316 (2005)

    Article  ADS  Google Scholar 

  26. J.A. Vinasco, A. Radu, E. Kasapoglu, R.L. Restrepo, A.L. Morales, E. Feddi, M.E. Mora-Ramos, C.A. Duque, Effects of geometry on the electronic properties of semiconductor elliptical quantum rings. Sci. Rep. 8, 13299 (2018)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  27. J.A. Vinasco, A. Radu, E. Niculescu, M.E. Mora-Ramos, E. Feddi, V. Tulupenko, R.L. Restrepo, E. Kasapoglu, A.L. Morales, C.A. Duque, Electronic states in GaAs-(Al, Ga)As eccentric quantum rings under nonresonant intense laser and magnetic fields. Sci. Rep. 9, 1427 (2019)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  28. W. Xie, Absorption spectra of a donor impurity in a quantum ring. Phys. Status Solidi B 246, 1313–1317 (2009)

    Article  CAS  ADS  Google Scholar 

  29. Z. Barticevic, M. Pacheco, A. Latge, Quantum rings under magnetic fields: electronic and optical properties. Phys. Rev. B 62, 6963–6966 (2000)

    Article  CAS  ADS  Google Scholar 

  30. J. Simonin, C.R. Proetto, Single-particle electronic spectra of quantum rings: a comparative study. Phys. Rev. B 70, 205305 (2004)

    Article  ADS  Google Scholar 

  31. O. Olendski, T. Barakat, Magnetic field control of the intraband optical absorption in two-dimensional quantum rings. J. Appl. Phys. 115, 083710 (2014)

    Article  ADS  Google Scholar 

  32. S. Pal, M. Ghosh, C.A. Duque, Impurity related optical properties in tuned quantum dot/ ring systems. Phil. Mag. 99, 2457–2486 (2019)

    Article  CAS  ADS  Google Scholar 

  33. M.K. Elsaid, A. Shaer, E. Hjaz, M.H. Yahya, Impurity effects on the magnetization and magnetic susceptibility of an electron confined in a quantum ring under the presence of an external magnetic field. Chin. J. Phys. 64, 9–17 (2020)

    Article  MathSciNet  CAS  Google Scholar 

  34. J.L. Movilla, A. Ballester, J. Planelles, Coupled donors in quantum dots: Quantum size and dielectric mismatch effects. Phys. Rev. B 79, 195319 (2009)

    Article  ADS  Google Scholar 

  35. G. Liu, K. Guo, H. Hassanabadi, L. Lu, Linear and nonlinear optical properties in a disk-shaped quantum dot with a parabolic potential plus a hyperbolic potential in a static magnetic field. Physica B 407, 3676–3682 (2012)

    Article  CAS  ADS  Google Scholar 

  36. L. Lu, W. Xie, H. Hassanabadi, The effects of intense laser on nonlinear properties of shallow donor impurities in quantum dots with the Woods-Saxon potential. J. Lumin. 131, 2538–2543 (2011)

    Article  CAS  Google Scholar 

  37. J. Ganguly, S. Saha, S. Pal, M. Ghosh, Noise-driven optical absorption coefficients of impurity doped quantum dots. Physica E 75, 246–256 (2016)

    Article  CAS  ADS  Google Scholar 

  38. R. Manjarres-Garcia, G.E. Escorcia-Salas, I.D. Mikhailov, J. Sierra-Ortega, Singly ionized double donor complex in vertically coupled quantum dots. Nanoscale Res. Lett. 7, 489 (2012)

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  39. Magnetic field and hydrostatic pressure, M. R-Fulla, J.H. Marin, W. Gutierrez, M.E. Mora-Ramos, C.A. Duque, Essential properties of a D2+ molecular complex confined in ring-like nanostructures under external probes. Superlatt. Microstruct. 67, 207–220 (2014)

    Article  Google Scholar 

  40. E.B. Al, H. Sari, E. Kasapoglu, S. Sakiroglu, I. Sokmen, Photoionization cross section of a D2+complex in quantum dots: the role of donor atoms configuration. Eur. Phys. J. Plus 137, 919 (2022)

    Article  CAS  Google Scholar 

  41. A.V. Tsukanov, Single-qubit operations in the double-donor structure driven by optical and voltage pulses. Phys. Rev. B 76, 035328 (2007)

    Article  ADS  Google Scholar 

  42. S. Kang, Y.-M. Liu, T.-Y. Shi, H2+-like impurities confined by spherical quantum dots: a candidate for charge qubits. Commun. Theor. Phys. 50, 767–770 (2008)

    Article  CAS  ADS  Google Scholar 

  43. E. Giraldo-Tobon, J.L. Palacio, G.L. Miranda, M.R. Fulla, Non-linear response under terahertz radiation of an asymmetric Ga1-xAlxAs/GaAs/Ga1-yAlyAs V-groove nanowire confining a singly-ionized double donor. J. Mater. Sci. 57, 8406–8416 (2022)

    Article  CAS  ADS  Google Scholar 

  44. Y.A. Suaza, M.R. Fulla, D. Laroze, H.M. Baghramyan, J.H. Marin, Intense laser field effect on D2+ molecular complex localized in semiconductor quantum wells. Chem. Phys. Lett. 730, 384–390 (2019)

    Article  CAS  ADS  Google Scholar 

  45. L.G.L. Ponce, Y.A.S. Tabares, M.R. Furla, J.A.P. Taborda, A.G.A. Bernal, J.H.M. Cadavid, Thermodynamic behaviour of a D2+ molecular complex in quantum rings under the combined effects of nonresonant intense laser field radiation and electric field. Phil. Magazine 103, 768–790 (2023)

    Article  ADS  Google Scholar 

  46. A. Tiutiunnyk, V. Tulupenko, M.E. Mora-Ramos, E. Kasapoglu, F. Ungan, H. Sari, I. Sokmen, C.A. Duque, Electron-related optical responses in triangular quantum dots. Physica E 60, 127–132 (2014)

    Article  CAS  Google Scholar 

  47. H. Sari, E.B. Al, E. Kasapoglu, S. Sakiroglu, I. Sokmen, M. Toro-Escobar, C.A. Duque, Electronic and optical properties of a D2+ complex in two-dimensional quantum dots with Gaussian confinement potential. Eur. Phys. J. Plus 137, 464 (2022)

    Article  CAS  Google Scholar 

  48. Yu. D. Sibirmovskii, I.S. Vasil’evskii, A.N. Vinichenko, I.S. Eremin, D.M. Zhigunov, N.I. Kargin, O.S. Kolentsova, P.A. Martyuk, M.N. Strikhanov, Photoluminescence of Gaas/AlGaAs quantum ring arrays, Semicond. 49, 638–643 (2015).

  49. P. Boonpeng, S. Kiravittaya, S. Thainoi, S. Panyakeow, S. Ratanathammaphan, InGaAs quantum-dot in-ring structure by droplet epitaxy. J. Cryst. Growth 378, 435–438 (2013)

    Article  CAS  ADS  Google Scholar 

  50. J.D. Salazar-Santa, D. Fonnegra-García, J.H. Marín, Entropy and electronic properties of an off-axis hydrogen-like impurity in non-uniform height quantum ribbon with structural and geometrical azimuthal potential barriers. Opt. Quant. Electron. 53, 176 (2021)

    Article  CAS  Google Scholar 

  51. Y.A. Suaza, D. Fonnegra-Garcia, M.R. Fulla, J.D. Salazar-Santa, J.H. Marin, Donor impurity states in a non-uniform quantum strip: Geometrical and electro-magnetic field effects. Superlatt. Microstruct 103, 127–138 (2017)

    Article  CAS  ADS  Google Scholar 

  52. S. Antil, M. Kumar, S. Lahon, A.S. Maan, Pressure dependent optical properties of quantum dot with spin orbit interaction and magnetic field. Optik 176, 278 (2019)

    Article  CAS  ADS  Google Scholar 

  53. M. Baira, B. Salem, N.A. Madhar, B. Ilahi, Linear and Nonlinear Intersubband Optical Properties of Direct Band Gap GeSn Quantum Dots. Nanomaterials 9, 124 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  54. D.V. Stass, V.A. Bagryansky, Y.N. Molin, Simple rules for resolved level-crossing spectra in magnetic field effects on reaction yields. Magn. Reson. 2, 77–91 (2021)

    Article  Google Scholar 

  55. T.G. Eck, Level crossings and anticrossing. Physica 33, 157–162 (1967)

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

H.S: Methodology, formal analysis, software, investigation, writing; S.S: writing, formal analysis, investigation.

Corresponding author

Correspondence to S. Sakiroglu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sari, H., Sakiroglu, S. Molecular complex states and intersubband transitions in a quantum ring under Gaussian repulsive potential. Eur. Phys. J. Plus 139, 244 (2024). https://doi.org/10.1140/epjp/s13360-024-05064-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05064-8

Navigation