Skip to main content
Log in

Electronic and optical properties of a \(D_2^+\) complex in two-dimensional quantum dots with Gaussian confinement potential

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Using the two-dimensional diagonalization method and the effective mass approximation, the electronic structure and intersubband optical absorption of the singly ionized double donor complex confined in a Gaussian quantum dot have been investigated. The obtained results indicated that the quantum dot size and internuclear distance significantly affect the binding energy, dissociation energy, equilibrium distance, and amplitude of the optical absorption. Also, we conclude that a significant increase in the amplitude of the dipole-related matrix element and the energy difference between the two lowest-lying energy states is observed when the distance between the donor atoms is in the order of the quantum dot size. Consequently, the electronic and optical properties can be precisely tuned by controlling the system’s size and the internuclear distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. W. Gutierrez, L.F. Garcia, I.D. Mikhailov, Coupled donors in quantum ring in a threading magnetic field. Physica E 43, 559–566 (2010)

    Article  ADS  Google Scholar 

  2. Y. Huang, H. Zang, J.-S. Chen, E.A. Sutter, P.W. Sutter, C.-Y. Nam, M. Cotlet, Hybrid quantum dot-tin disulfide field-effect. Appl. Phys. Lett. 108, 123502 (2016)

    Article  ADS  Google Scholar 

  3. N. Hildebrandt, C.M. Spillmann, W. Russ Algar, T. Pons, M.H. Stewart, E. Oh, K. Susumu, S.A. Díaz, J.B. Delehanty, I.L. Medintz, Energy transfer with semiconductor quantum dot bioconjugates: a versatile platform for biosensing, energy harvesting, and other developing applications. Chem. Rev. 117, 536–711 (2017)

    Article  Google Scholar 

  4. N. Hernandez, R. Lopez, J.A. Alvarez, J.H. Marin, M.R. Fulla, H. Tobon, Optical absorption computation of a \(D_2^{+}\) artificial molecule in GaAs/Ga\(_{1-x}\)Al\(_x\)As nanometer-scale rings. Optik 245, 167637 (2021)

    ADS  Google Scholar 

  5. D. Ghosh, S.A. Ivanov, S. Tretiak, Structural dynamics and electronic properties of semiconductor quantum dots: computational insights. Chem. Mater. 33, 7848–7857 (2021)

    Article  Google Scholar 

  6. D. Bejan, Impurity-related nonlinear optical rectification in double quantum dot under electric field. Phys. Lett. A 380, 3836–3842 (2016)

    Article  ADS  Google Scholar 

  7. A. Boda, Effect of magnetic field on the energy spectrum, binding energy and magnetic susceptibility of an impurity in a 2D Gaussian quantum dot. Ecs J. Sol. State Sci. Techn. 10, 041001 (2021)

    Article  ADS  Google Scholar 

  8. P. Saini, A. Chatterjee, Confnement shape effect on D-0 impurity in a GaAs quantum dot with spin-orbit coupling in a magnetic field. Superlatt. Microstr. 146, 106641 (2020)

    Article  Google Scholar 

  9. O. Akankan, I. Erdogan, A.I. Mese, E. Cicek, H. Akbas, The effects of geometrical shape and impurity position on the self-polarization of a donor impurity in an infinite GaAs/AlAs tetragonal quantum dot. Ind. J. Phys. 95, 1341–1344 (2020)

    Article  Google Scholar 

  10. S. Pal, M. Ghosh, C.A. Duque, Impurity related optical properties in tuned quantum dot/ring systems. Phil. Mag. 99, 2457–2486 (2019)

    Article  ADS  Google Scholar 

  11. X.F. Bai, Y.W. Zhao, H.W. Yin, Influence of hydrogen-like impurity and thickness effect on quantum transition of a two-level system in an asymmetric Gaussian potential quantum dot. Acta Phys. Sinica 67, 177801 (2018)

    Article  Google Scholar 

  12. M. Solaimani, Binding energy and diamagnetic susceptibility of donor impurities in quantum dots with different geometries and potentials. Mat. Sci. Eng. B 262, 114694 (2020)

    Article  Google Scholar 

  13. H. Bahramiyan, Electric field and impurity effect on nonlinear optical rectification of a double cone like quantum dot. Opt. Mater. 75, 187–195 (2018)

    Article  ADS  Google Scholar 

  14. E.C. Niculescu, C. Stan, M. Cristea, C. Trusca, Magnetic-field dependence of the impurity states in a dome-shaped quantum dot. Chem. Phys. 493, 32–41 (2017)

    Article  Google Scholar 

  15. A.L. Vartanian, A.L. Asatryan, L.A. Vardanyan, Influence of image charge effect on impurity-related optical absorption coefficients and refractive index changes in a spherical quantum dot. Superlatt. Microstr. 103, 205–212 (2017)

    Article  ADS  Google Scholar 

  16. D.S. Acosta Coden, R.H. Romero, A. Ferron, S.S. Gomez, Optimal control of a charge qubit in a double quantum dot with a Coulomb impurity. Physica E 86, 36–43 (2017)

    Article  ADS  Google Scholar 

  17. G. Rezaei, S. Shojaeian Kish, Effects of external electric and magnetic fields, hydrostatic pressure and temperature on the binding energy of a hydrogenic impurity confined in a two-dimensional quantum dot. Physica E 45, 56–60 (2012)

    Article  ADS  Google Scholar 

  18. Z. Xiao, J. Zhu, F. He, Magnetic field dependence of the binding energy of a hydrogenic impurity in a spherical quantum dot. J. Appl. Phys. 79, 9181 (1996)

    Article  ADS  Google Scholar 

  19. P. Hosseinpour, A. Soltani-Vala, J. Barvestani, Effect of impurity on the absorption of a parabolic quantum dot with including Rashba spin-orbit interaction. Physica E 80, 48–52 (2016)

    Article  ADS  Google Scholar 

  20. C.M. Duque, M.G. Barseghyan, C.A. Duque, Hydrogenic impurity binding energy in vertically coupled Ga\({1-x}\)Al\(_x\)As quantum-dots under hydrostatic pressure and applied electric field. Physica B 404, 5177–5180 (2009)

    Article  ADS  Google Scholar 

  21. C. Heyn, C.A. Duque, Donor impurity related optical and electronic properties of cylindrical GaAs/Ga\(_{1-x}\)Al\(_x\)As quantum dots under tilted electric and magnetic felds. Sci. Rep. 10, 9155 (2020)

    Article  ADS  Google Scholar 

  22. L. Belamkadem, O. Mommadi, J.A. Vinasco, D. Laroze, A. El Moussaouy, M. Chnafi, C.A. Duque, Electronic properties and hydrogenic impurity binding energy of a new variant quantum dot. Physica E 129, 114642 (2021)

    Article  Google Scholar 

  23. H. Sari, E. Kasapoglu, S. Sakiroglu, I. Sokmen, C.A. Duque, Impurity-related optical response in a 2D and 3D quantum dot with Gaussian confinement under intense laser field. Phil. Mag. 100, 619–641 (2020)

    Article  ADS  Google Scholar 

  24. A. Boda, Intersubband optical absorption in Gaussian GaAs quantum dot in the presence of magnetic, electrical and AB flux fields. Physica B 575, 411699 (2019)

    Article  Google Scholar 

  25. I. Al-Hayek, A.S. Sandouqa, Energy and binding energy of donor impurity in quantum dot with Gaussian confinement. Superlatt. Microstr. 85, 216–225 (2015)

    Article  ADS  Google Scholar 

  26. J. Adamowski, M. Sobkowicz, B. Szafran, S. Bednarek, Electron pair in a Gaussian confining potential. Phys. Rev. B 62, 4234–4237 (2000)

    Article  ADS  Google Scholar 

  27. H.K. Sharma, A. Boda, B. Boyacioglu, A. Chatterjee, Electronic and magnetic properties of a two-electron Gaussian GaAs quantum dot with spin-Zeeman term: a study by numerical diagonalization. J. Magn. Magn. Mater. 469, 171–177 (2019)

    Article  ADS  Google Scholar 

  28. A. Gharaati, R. Khordad, A new confinement potential in spherical quantum dots: modified Gaussian potential. Superlatt. Microstr. 48, 276–287 (2010)

    Article  ADS  Google Scholar 

  29. R. Khordad, Use of modified Gaussian potential to study an exciton in a spherical quantum dot. Superlatt. Microstr. 54, 7–15 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  30. R. Khordad, Energy levels and transition frequency of strong-coupling polaron in a Gaussian quantum dot. Mod. Phys. Lett. B 28, 1450153 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  31. R. Khordad, Calculation of exchange interaction for modified Gaussian coupled quantum dots. Indian J. Phys. 91, 869 (pp5) (2017)

    Article  ADS  Google Scholar 

  32. F.J. Betancur, I.D. Mikhailov, J.H. Marinz, L.E. Oliveira, Electronic structure of donor-impurity complexes in GaAs/Ga\(_{1-x}\)Al\(_x\)As quantum wells. J. Phys. Condens. Matter 10, 7283–7292 (1998)

    Article  ADS  Google Scholar 

  33. R. Manjarres-Garcia, G.E. Escorcia-Salas, J. Manjarres-Torres, I.D. Mikhailov, J. Sierra-Ortega, Double-donor complex in vertically coupled quantum dots in a threading magnetic field. Nanoscale Res. Lett. 7, 531 (2012)

    Article  ADS  Google Scholar 

  34. M. R-Fulla, J.H. Marín, W. Gutiérrez, M.E. Mora-Ramos, C.A. Duque, Magnetic field and hydrostatic pressure. Essential properties of a \(D_2^{+}\) molecular complex confined in ring-like nanostructures under external probes. Superlatt. Microstruct. 67, 207–220 (2014)

  35. S. Kang, Y.-M. Liu, T.-Y. Shi, \(H_2^{+}\)-like impurities confined by spherical quantum dots: a candidate for charge qubits. Commun. Theor. Phys. 50, 767–770 (2008)

    Article  ADS  Google Scholar 

  36. S. Kang, Y.-M. Liu, T.-Y. Shi, The characteristics for \(H_2^{+}\)- like impurities confined by spherical quantum dots. Eur. Phys. J. B 63, 37–42 (2008)

    Article  ADS  Google Scholar 

  37. J.L. Movilla, A. Ballester, J. Planelles, Coupled donors in quantum dots: quantum size and dielectric mismatch effects. Phys. Rev. B 79, 195319 (2009)

    Article  ADS  Google Scholar 

  38. R. Manjarres-Garcia, G.E. Escorcia-Salas, I.D. Mikhailov, J. Sierra-Ortega, Singly ionized double donor complex in vertically coupled quantum dots. Nanoscale Res. Lett. 7, 489 (2012)

    Article  ADS  Google Scholar 

  39. A. Tiutiunnyk, V. Tulupenko, M.E. Mora-Ramos, E. Kasapoglu, F. Ungan, H. Sari, I. Sokmen, C.A. Duque, Electron-related optical responses in triangular quantum dots. Physica E 60, 127–132 (2014)

    Article  Google Scholar 

  40. A. Tiutiunnyk, V. Akimov, V. Tulupenko, M.E. Mora-Ramos, E. Kasapoglu, F. Ungan, I. Sokmen, A.L. Morales, C.A. Duque, Electronic structure and optical properties of triangular GaAs/AlGaAs quantum dots: exciton and impurity states. Physica B 484, 95–108 (2016)

    Article  ADS  Google Scholar 

  41. A. Tiutiunnyk, V. Tulupenko, V. Akimov, R. Demedyuk, A.L. Morales, M.E. Mora-Ramos, A. Radu, C.A. Duque, Study of electron-related intersubband optical properties in three coupled quantum wells wires with triangular transversal section. Superlattices Microstruct. 87, 131–136 (2015)

    Article  ADS  Google Scholar 

  42. A. Tiutiunnyk, V. Akimov, V. Tulupenko, M.E. Mora-Ramos, E. Kasapoglu, A.L. Morales, C.A. Duque, Electron and donor-impurity-related Raman scattering and Raman gain in triangular quantum dots under an applied electric field. Eur. Phys. J. B 89, 107 (pp9) (2016)

    Article  ADS  Google Scholar 

  43. COMSOL Multiphysics, v. 5.4. COMSOL AB, Stockholm, Sweden

  44. COMSOL Multiphysics Reference Guide, Stockholm, Sweden (May 2012)

  45. COMSOL Multiphysics Users Guide, Stockholm, Sweden (May 2012)

  46. J.A. Vinasco, A. Radu, C.A. Duque, Propiedades electrónicas de un anillo cuántico elíptico con sección transversal rectangular. Revista EIA 16, 77–87 (2019)

    Article  Google Scholar 

  47. J.A. Vinasco, A. Radu, E. Kasapoglu, R.L. Restrepo, A.L. Morales, E. Feddi, M.E. Mora-Ramos, C.A. Duque, Effects of geometry on the electronic properties of semiconductor elliptical quantum rings. Sci. Rep. 8, 13299 (pp15) (2018)

    Article  ADS  Google Scholar 

  48. J.A. Vinasco, A. Radu, E. Niculescu, M.E. Mora-Ramos, E. Feddi, V. Tulupenko, R.L. Restrepo, E. Kasapoglu, A.L. Morales, C.A. Duque, Electronic states in GaAs-(Al, Ga)As eccentric quantum rings under nonresonant intense laser and magnetic fields. Sci. Rep. 9, 1427 (pp17) (2019)

    Article  ADS  Google Scholar 

  49. J.A. Vinasco, A. Radu, R.L. Restrepo, A.L. Morales, M.E. Mora-Ramos, C.A. Duque, Magnetic field effects on intraband transitions in elliptically polarized laser-dressed quantum rings. Opt. Mater. 91, 309–320 (2019)

    Article  ADS  Google Scholar 

  50. H.Q. Lin, J.E. Gubernatis, H. Gould, J. Tobochnik, Exact diagonalization methods for quantum systems. Comput. Phys. 7, 400 (1993)

    Article  ADS  Google Scholar 

  51. Constantine Yannouleas, Uzi Landman, Two-dimensional quantum dots in high magnetic fields: rotating-electron-molecule versus composite-fermion approach. Phys. Rev. B 68, 035326 (pp11) (2003)

    Article  ADS  Google Scholar 

  52. A. Radu, A.A. Kirakosyan, D. Laroze, H.M. Baghramyan, M.G. Barseghyan, Electronic and intraband optical properties of single quantum rings under intense laser field radiation. J. Appl. Phys. 116, 093101 (pp6) (2014)

    Article  ADS  Google Scholar 

  53. D. Laroze, M. Barseghyan, A. Radu, A.A. Kirakosyan, Laser driven impurity states in two-dimensional quantum dots and quantum rings. Physica B 501, 1–4 (2016)

    Article  ADS  Google Scholar 

  54. R. Khordad, The effect of Rashba spin-orbit interaction on electronic and optical properties of a double ring-shaped quantum dot. Superlattice. Microst. 110, 146–154 (2017)

    Article  ADS  Google Scholar 

  55. B. Çakir, Y. Yakar, A. Özmen, Linear and nonlinear absorption coefficients of spherical quantum dot inside external magnetic field. Physica B 510, 86–91 (2017)

    Article  ADS  Google Scholar 

  56. R. Khordad, Optical properties of wedge-shaped quantum dots under Rashba spin-orbit interaction. Int. J. Mod. Phys. B 31, 1750055 (2017)

    Article  ADS  MATH  Google Scholar 

  57. Wenfang Xie, A study of an exciton in a quantum dot with Woods-Saxon potential. Superlatt. Microstr. 46, 693–699 (2009)

    Article  ADS  Google Scholar 

  58. R. Khordad, Use of modified Gaussian potential to study an exciton in a spherical quantum dot. Superlatt. Microstr. 54, 7–15 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  59. H. Dakhlaoui, J.A. Vinasco, C.A. Duque, External fields controlling the linear and nonlinear optical properties of quantum cascade laser based on staircase-like quantum wells. Superlatt. Microstr. 155, 106885 (2021)

    Article  Google Scholar 

  60. E. Kasapoglu, C.A. Duque, The effects of external fields on double GaAs/AlGaAs quantum well with Manning potential. Mater. Sci. Semicond. Process. 137, 106232 (pp9) (2022)

    Article  Google Scholar 

Download references

Acknowledgements

CAD is grateful to the Colombian Agencies: CODI-Universidad de Antioquia (Estrategia de Sostenibilidad de la Universidad de Antioquia and projects "Propiedades magneto-ópticas y óptica no lineal en superredes de Grafeno", "Estudio de propiedades ópticas en sistemas semiconductores de dimensiones nanoscópicas", and "Propiedades de transporte, espintrónicas y térmicas en el sistema molecular ZincPorfirina"), and Facultad de Ciencias Exactas y Naturales-Universidad de Antioquia (CAD exclusive dedication project 2021-2022). CAD also acknowledges the financial support from El Patrimonio Autónomo Fondo Nacional de Financiamiento para la Ciencia, la Tecnología y la Innovación Francisco José de Caldas (project: CD 111580863338, CT FP80740-173-2019).

Author information

Authors and Affiliations

Authors

Contributions

The contributions of the authors are as follows: HS: proposed the problem and worked on the numerical calculations and writing of the manuscript. EBA: worked on the numerical calculations and writing of the manuscript. EK: worked on the numerical calculations, in formal analysis, and writing of the manuscript. SS: worked on the formal analysis and writing of the manuscript. IS: worked on the numerical calculations and formal analysis. MT-E: worked on the numerical calculations and writing of the manuscript. CAD: worked on the numerical calculations and writing of the manuscript.

Corresponding author

Correspondence to C. A. Duque.

Ethics declarations

Conflict of interest

The authors do not have any financial and non-financial competing interests statement.

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All the files with tables, figures, and codes are available. The corresponding author will provide all the files in case they are requested.]

Additional information

I. Sökmen, Dokuz Eylul University, Retired.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sari, H., Al, E.B., Kasapoglu, E. et al. Electronic and optical properties of a \(D_2^+\) complex in two-dimensional quantum dots with Gaussian confinement potential. Eur. Phys. J. Plus 137, 464 (2022). https://doi.org/10.1140/epjp/s13360-022-02649-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02649-z

Navigation