Skip to main content
Log in

Application of the NSFD method in a Malaria model with nonlinear incidence and recovery rates

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this manuscript, we formulate a malaria model with nonlinear incidence and recovery rates to study the impact of the health system’s available resources on disease spread and control. A detailed analysis of the model is provided. It is determined that when the basic reproduction number, \({\mathcal {R}}_0\), is less than unity, the disease may or may not die out due to nonlinear recovery rate. In addition, it is asserted that if the recovery rate is constant, disease eradication is possible for \({\mathcal {R}}_0<1\). The global stability of the unique endemic equilibrium point is established using geometric approach. The model system is also examined for Hopf bifurcation, and it is established that certain conditions on the transmission rate from vector to human lead to the emergence of periodic oscillations in the model system. Keeping in mind the nonlinear nature of the hypothesized model, we develop a non-standard finite difference (NSFD) scheme by discretizing the system. It is proven that conservation law and the positivity of the solutions are maintained by the proposed NSFD method for all finite step sizes. Furthermore, the convergence and error bounds of the developed schemes are also explored. To validate the analytical results, numerical simulations using our computational scheme are presented and these results are compared to two well-known standard numerical techniques, viz. the fourth-order Runge–Kutta (RK4) method and the forward Euler method. It is found that conventional numerical schemes fail to accurately capture the dynamics of the continuous model for certain step sizes, resulting in unstable and negative numerical solutions. In contrast, the developed NSFD scheme successfully retains the fundamental mathematical characteristics of the continuous model. It is worth mentioning that the NSFD schemes also capture the backward bifurcation phenomenon. In addition, numerical simulations show that Hopf bifurcation occurs due to transmission rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

The authors declare that there are no data associated with this manuscript.

References

  1. A. Abdelrazec, J. Bélair, C. Shan, H. Zhu, Modeling the spread and control of dengue with limited public health resources. Math. Biosci. 271, 136–145 (2016)

    Article  MathSciNet  PubMed  Google Scholar 

  2. S. Acharya, B. Mondal, R.K. Upadhyay, P. Das, Exploring noise-induced dynamics and optimal control strategy of iSIR cholera transmission model. Nonlinear Dyn. 112, 1–25 (2024)

    Article  Google Scholar 

  3. S. Acharya, R.K. Upadhyay, B. Mondal, Impact of Allee Effect on the Spatio-temporal behavior of a diffusive epidemic model in heterogenous environment. Int. J. Bifurc. Chaos 33(16), 2350194 (2023)

    Article  MathSciNet  Google Scholar 

  4. P. Saha, B. Mondal, U. Ghosh, Dynamical behaviors of an epidemic model with partial immunity having nonlinear incidence and saturated treatment in deterministic and stochastic environments. Chaos, Solitons & Fractals 174, 113775 (2023)

    Article  MathSciNet  Google Scholar 

  5. P. Saha, B. Mondal, U. Ghosh, Global dynamics and optimal control of a two-strain epidemic model with non-monotone incidence and saturated treatment. Iran. J. Sci. 1–17 (2023)

  6. A.K. Srivastav, M. Ghosh, Modeling the transmission dynamics of malaria with saturated treatment: a case study of India. J. Appl. Math. Comput. 67(1), 519–540 (2021)

    Article  MathSciNet  Google Scholar 

  7. A.F. Cowman, J. Healer, D. Marapana, K. Marsh, Malaria: biology and disease. Cell 167(3), 610–624 (2016)

    Article  CAS  PubMed  Google Scholar 

  8. C.N. Ngonghala, S.Y. Del Valle, R. Zhao, J. Mohammed-Awel, Quantifying the impact of decay in bed-net efficacy on malaria transmission. J. Theor. Biol. 363, 247–261 (2014)

    Article  ADS  MathSciNet  PubMed  PubMed Central  Google Scholar 

  9. Centers for Disease Control and Prevention- Malaria:. https://www.cdc.gov/parasites/malaria/index.html

  10. R. Ross, The Prevention of Malaria (John Murray, 1911)

  11. F. Agusto, S. Lenhart, Optimal control of the spread of malaria superinfectivity. J. Biol. Syst. 21(04), 1340002 (2013)

    Article  MathSciNet  Google Scholar 

  12. F.B. Agusto, S.Y. Del Valle, K.W. Blayneh, C.N. Ngonghala, M.J. Goncalves, N. Li, R. Zhao, H. Gong, The impact of bed-net use on malaria prevalence. J. Theor. Biol. 320, 58–65 (2013)

    Article  ADS  PubMed  Google Scholar 

  13. B. Buonomo, C. Vargas-De-León, Stability and bifurcation analysis of a vector-bias model of malaria transmission. Math. Biosci. 242(1), 59–67 (2013)

    Article  MathSciNet  PubMed  Google Scholar 

  14. X. Feng, S. Ruan, Z. Teng, K. Wang, Stability and backward bifurcation in a malaria transmission model with applications to the control of malaria in China. Math. Biosci. 266, 52–64 (2015)

    Article  MathSciNet  PubMed  Google Scholar 

  15. K.O. Okosun, R. Ouifki, N. Marcus, Optimal control analysis of a malaria disease transmission model that includes treatment and vaccination with waning immunity. Biosystems 106(2–3), 136–145 (2011)

    Article  CAS  PubMed  Google Scholar 

  16. H. Tasman et al., An optimal control strategy to reduce the spread of malaria resistance. Math. Biosci. 262, 73–79 (2015)

    Article  MathSciNet  PubMed  Google Scholar 

  17. J. Wang, X.-Z. Li, S. Bhattacharya, The backward bifurcation of a model for malaria infection. Int. J. Biomath. 11(02), 1850018 (2018)

    Article  MathSciNet  Google Scholar 

  18. L.-M. Cai, X.-Z. Li, Global analysis of a vector-host epidemic model with nonlinear incidences. Appl. Math. Comput. 217(7), 3531–3541 (2010)

    MathSciNet  Google Scholar 

  19. P. Roop-O, W. Chinviriyasit, S. Chinviriyasit, The effect of incidence function in backward bifurcation for malaria model with temporary immunity. Math. Biosci. 265, 47–64 (2015)

    Article  MathSciNet  PubMed  Google Scholar 

  20. S. Ullah, M.F. Khan, S.A.A. Shah, M. Farooq, M.A. Khan, M.B. Mamat, Optimal control analysis of vector-host model with saturated treatment. Eur. Phys. J. Plus 135(10), 1–25 (2020)

    Article  Google Scholar 

  21. C. Shan, H. Zhu, Bifurcations and complex dynamics of an SIR model with the impact of the number of hospital beds. J. Differ. Equ. 257(5), 1662–1688 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  22. F.S. Alshammari, M.A. Khan, Dynamic behaviors of a modified SIR model with nonlinear incidence and recovery rates. Alex. Eng. J. 60(3), 2997–3005 (2021)

    Article  Google Scholar 

  23. J.K.K. Asamoah, F. Nyabadza, Z. Jin, E. Bonyah, M.A. Khan, M.Y. Li, T. Hayat, Backward bifurcation and sensitivity analysis for bacterial meningitis transmission dynamics with a nonlinear recovery rate. Chaos, Solitons & Fractals 140, 110237 (2020)

    Article  MathSciNet  Google Scholar 

  24. G.-H. Li, Y.-X. Zhang, Dynamic behaviors of a modified SIR model in epidemic diseases using nonlinear incidence and recovery rates. PLoS ONE 12(4), e0175789 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  25. F. Nyabadza, J.M. Aduamah, J. Mushanyu, Modelling cholera transmission dynamics in the presence of limited resources. BMC Res. Not. 12(1), 1–8 (2019)

    Google Scholar 

  26. P. Saha, U. Ghosh, Global dynamics and control strategies of an epidemic model having logistic growth, non-monotone incidence with the impact of limited hospital beds. Nonlinear Dyn. 105(1), 971–996 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  27. H. Zhao, L. Wang, S. Oliva, H. Zhu, Modeling and dynamics analysis of Zika transmission with limited medical resources. Bull. Math. Biol. 82(8), 1–50 (2020)

    Article  MathSciNet  Google Scholar 

  28. X.-W. Jiang, X.-S. Zhan, Z.-H. Guan, X.-H. Zhang, Yu. Li, Neimark-Sacker bifurcation analysis on a numerical discretization of Gause-type predator-prey model with delay. J. Franklin Inst. 352(1), 1–15 (2015)

    Article  MathSciNet  Google Scholar 

  29. M. Peng, Bifurcation and chaotic behavior in the Euler method for a Kaplan-Yorke prototype delay model. Chaos, Solitons & Fractals 20(3), 489–496 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  30. R.E. Mickens, Difference equation models of differential equations. Math. Comput. Model. 11, 528–530 (1988)

    Article  MathSciNet  Google Scholar 

  31. R.E. Mickens, Nonstandard Finite Difference Models of Differential Equations (World Scientific, 1994)

  32. R.E. Mickens, Numerical integration of population models satisfying conservation laws: NSFD methods. J. Biol. Dyn. 1(4), 427–436 (2007)

    Article  MathSciNet  PubMed  Google Scholar 

  33. R.E. Mickens, P.M. Jordan, A positivity-preserving nonstandard finite difference scheme for the damped wave equation. Numer. Methods Partial Differ. Equ. Int. J. 20(5), 639–649 (2004)

    Article  MathSciNet  Google Scholar 

  34. Q. Cui, X. Jiabo, Q. Zhang, K. Wang, An NSFD scheme for SIR epidemic models of childhood diseases with constant vaccination strategy. Adv. Differ. Equ. 2014(1), 1–15 (2014)

    Article  MathSciNet  Google Scholar 

  35. A.M. Elaiw, M.A. Alshaikh, Stability preserving NSFD scheme for a general virus dynamics model with antibody and cell-mediated responses. Chaos, Solitons & Fractals 138, 109862 (2020)

    Article  MathSciNet  Google Scholar 

  36. S.M. Garba, A.B. Gumel, J.M.S. Lubuma, Dynamically-consistent non-standard finite difference method for an epidemic model. Math. Comput. Model. 53(1–2), 131–150 (2011)

    Article  MathSciNet  Google Scholar 

  37. T.S. Shaikh, N. Fayyaz, N. Ahmed, N. Shahid, M. Rafiq, I. Khan, K.S. Nisar, Numerical study for epidemic model of hepatitis-B virus. Eur. Phys. J. Plus 136(4), 1–22 (2021)

    Article  Google Scholar 

  38. A. Suryanto, I. Darti, On the nonstandard numerical discretization of SIR epidemic model with a saturated incidence rate and vaccination. AIMS Math. 6, 141–155 (2021)

    Article  MathSciNet  Google Scholar 

  39. I. Darti, A. Suryanto, Stability preserving non-standard finite difference scheme for a harvesting Leslie-Gower predator-prey model. J. Differ. Equ. Appl. 21(6), 528–534 (2015)

    Article  MathSciNet  Google Scholar 

  40. A.K. Misra, N. Jha, R. Patel, Modeling the effects of insects and insecticides with external efforts on agricultural crops. Differ. Equ. Dyn. Syst. 1–18 (2020)

  41. K. Mokni, M. Ch-Chaoui, B. Mondal, U. Ghosh, Rich dynamics of a discrete two dimensional predator–prey model using the NSFD scheme. Math. Comput. Simul. (2023)

  42. P. Saha, N. Bairagi, M. Biswas, On the dynamics of a discrete predator–prey model. Trends Biomath. Model. Optim. Comput. Probl. 219–232 (2018)

  43. Q.A. Dang, M.T. Hoang, Complete global stability of a metapopulation model and its dynamically consistent discrete models. Qual. Theory Dyn. Syst. 18(2), 461–475 (2019)

    Article  MathSciNet  Google Scholar 

  44. M.M. Khalsaraei, A. Shokri, H. Ramos, S. Heydari, A positive and elementary stable nonstandard explicit scheme for a mathematical model of the influenza disease. Math. Compute. Simul. 182, 397–410 (2021)

    Article  MathSciNet  Google Scholar 

  45. S. Liao, W. Yang, A nonstandard finite difference method applied to a mathematical cholera model. Bull. Korean Math. Soc. 54(6), 1893–1912 (2017)

    MathSciNet  Google Scholar 

  46. E.M. Adamu, K.C. Patidar, A. Ramanantoanina, An unconditionally stable nonstandard finite difference method to solve a mathematical model describing Visceral Leishmaniasis. Math. Comput. Simul. 187, 171–190 (2021)

    Article  MathSciNet  Google Scholar 

  47. M.T. Hoang, Dynamically consistent nonstandard finite difference schemes for a virus-patch dynamic model. J. Appl. Math. Comput. 68(5), 3397–3423 (2022)

    Article  MathSciNet  Google Scholar 

  48. M.T. Hoang, Reliable approximations for a hepatitis B virus model by nonstandard numerical schemes. Math. Comput. Simul. 193, 32–56 (2022)

    Article  MathSciNet  Google Scholar 

  49. M.T. Hoang, Dynamical analysis of a generalized hepatitis B epidemic model and its dynamically consistent discrete model. Math. Comput. Simul. 205, 291–314 (2023)

    Article  MathSciNet  Google Scholar 

  50. A.K. Misra, N. Jha, R. Patel, Modeling the effects of insects and insecticides on agricultural crops with NSFD method. J. Appl. Math. Comput. 63, 197–215 (2020)

    Article  MathSciNet  Google Scholar 

  51. J.C. Koella, On the use of mathematical models of malaria transmission. Acta Trop. 49(1), 1–25 (1991)

    Article  CAS  PubMed  Google Scholar 

  52. R.M. Anderson, The persistence of direct life cycle infectious diseases within populations of hosts. Lect. Math. Life Sci. 12, 1–67 (1979)

    MathSciNet  Google Scholar 

  53. P. Van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180(1–2), 29–48 (2002)

    Article  MathSciNet  PubMed  Google Scholar 

  54. C.C. Chavez, Z. Feng, W. Huang, On the computation of R0 and its role on global stability. Math. Approach. Emerg. Re-emerg. Infect. Dis. Introduction 125, 31–65 (2002)

    Google Scholar 

  55. C. Castillo-Chavez, B. Song, Dynamical models of tuberculosis and their applications. Math. Biosci. Eng. 1(2), 361 (2004)

    Article  MathSciNet  PubMed  Google Scholar 

  56. H.I. Freedman, S. Ruan, M. Tang, Uniform persistence and flows near a closed positively invariant set. J. Dyn. Differ. Equ. 6(4), 583–600 (1994)

    Article  MathSciNet  Google Scholar 

  57. M.Y. Li, J.S. Muldowney, A geometric approach to global-stability problems. SIAM J. Math. Anal. 27(4), 1070–1083 (1996)

    Article  MathSciNet  Google Scholar 

  58. W.-M. Liu, Criterion of Hopf bifurcations without using eigenvalues. J. Math. Anal. Appl. 182(1), 250–256 (1994)

    Article  MathSciNet  Google Scholar 

  59. R.E. Mickens, Exact solutions to a finite-difference model of a nonlinear reaction-advection equation: Implications for numerical analysis. Numer. Methods Partial Differ. Equ. 5(4), 313–325 (1989)

    Article  MathSciNet  Google Scholar 

  60. R.E. Mickens, Applications of Nonstandard Finite Difference Schemes (World Scientific, 2000)

  61. R.E. Mickens, Dynamic consistency: a fundamental principle for constructing nonstandard finite difference schemes for differential equations. J. Differ. Equ. Appl. 11(7), 645–653 (2005)

    Article  MathSciNet  Google Scholar 

  62. L. Jódar, R.J. Villanueva, A.J. Arenas, G.C. González, Nonstandard numerical methods for a mathematical model for influenza disease. Math. Comput. Simul. 79(3), 622–633 (2008)

    Article  MathSciNet  Google Scholar 

  63. L.J.S. Allen, An Introduction to Mathematical Biology (Pearson/Prentice Hall, Upper Saddle River, 2007)

    Google Scholar 

  64. U.M. Ascher, L.R. Petzold, Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations, vol. 61 (SIAM, 1998)

  65. B. Buonomo, Analysis of a malaria model with mosquito host choice and bed-net control. Int. J. Biomath. 8(06), 1550077 (2015)

    Article  MathSciNet  Google Scholar 

  66. S.M. Garba, A.B. Gumel, M.R.A. Bakar, Backward bifurcations in dengue transmission dynamics. Math. Biosci. 215(1), 11–25 (2008)

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  67. L. Cai, S. Guo, X.Z. Li, M. Ghosh, Global dynamics of a dengue epidemic mathematical model. Chaos, Solitons & Fractals 42(4), 2297–2304 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  68. A. Khatua, T.K. Kar, Dynamical behavior and control strategy of a dengue epidemic model. Eur. Phys. J. Plus 135, 1–22 (2020)

    Article  Google Scholar 

  69. M. Ozair, A.A. Lashari, I.H. Jung, K.O. Okosun, et al., Stability analysis and optimal control of a vector-borne disease with nonlinear incidence. Discrete Dyn. Nat. Soc. 2012 (2012)

  70. N. Bairagi, M. Biswas, A predator-prey model with Beddington-DeAngelis functional response: a non-standard finite-difference method. J. Differ. Equ. Appl. 22(4), 581–593 (2016)

    Article  MathSciNet  Google Scholar 

  71. M. Biswas, N. Bairagi, On the dynamic consistency of a two-species competitive discrete system with toxicity: Local and global analysis. J. Comput. Appl. Math. 363, 145–155 (2020)

    Article  MathSciNet  Google Scholar 

  72. G. González-Parra, A.J. Arenas, B.M. Chen-Charpentier, Combination of nonstandard schemes and Richardson’s extrapolation to improve the numerical solution of population models. Math. Comput. Model. 52(7–8), 1030–1036 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the anonymous reviewers and the handling editor for providing valuable suggestions and comments that have greatly enhanced the quality of this paper.

Author information

Authors and Affiliations

Authors

Contributions

TS was involved in the conceptualization, formal analysis, validation, visualization, and writing—original draft. PKS contributed to the conceptualization, supervision, visualization, and writing—review and editing. PB assisted in the conceptualization, supervision, formal analysis, and writing—original draft.

Corresponding author

Correspondence to Prashant K. Srivastava.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendices

Appendix 1

$$\begin{aligned} {\mathcal {S}}_4=&a_{11}-a_{22}+a_{44}+c_2+\mu _h+2 \mu _v,\\ {\mathcal {S}}_3=&a_{11} c_2-a_{22} c_2+a_{44} c_2-a_{22} \mu _h+a_{44} \mu _h+2 a_{11} \mu _v-2 a_{22} \mu _v+a_{44} \mu _v-a_{11} a_{22}-a_{15} a_{42}+\\ {}&a_{11} a_{44}-a_{22} a_{44}+c_2 \mu _h+2 c_2 \mu _v+2 \mu _h \mu _v+\mu _v^2, \\ {\mathcal {S}}_2=&-a_{22} c_2 \mu _h+a_{44} c_2 \mu _h+2 a_{11} c_2 \mu _v-2 a_{22} c_2 \mu _v+a_{44} c_2 \mu _v-a_{11} a_{22} c_2-a_{15} a_{42} c_2+\\ {}&a_{11} a_{44} c_2-a_{22} a_{44} c_2-a_{11} a_{32} \gamma _h-a_{15} a_{42} \mu _h-a_{22} a_{44} \mu _h-2 a_{22} \mu _h \mu _v+a_{44} \mu _h \mu _v+a_{11} \mu _v^2-a_{22} \mu _v^2-2 a_{11} a_{22} \mu _v-\\ {}&a_{15} a_{42} \mu _v+a_{11} a_{44} \mu _v-a_{22} a_{44} \mu _v-a_{11} a_{22} a_{44}+2 c_2 \mu _h \mu _v+c_2 \mu _v^2+\mu _h \mu _v^2,\\ {\mathcal {S}}_1=&-a_{15} a_{42} c_2 \mu _h-a_{22} a_{44} c_2 \mu _h-2 a_{22} c_2 \mu _h \mu _v+a_{44} c_2 \mu _h \mu _v+a_{11} c_2 \mu _v^2-a_{22} c_2 \mu _v^2-2 a_{11} a_{22} c_2 \mu _v-a_{15} a_{42} c_2 \mu _v+ \\ {}&a_{11} a_{44} c_2 \mu _v-a_{22} a_{44} c_2 \mu _v-a_{11} a_{22} a_{44} c_2-a_{11} a_{32} a_{44} \gamma _h-2 a_{11} a_{32} \gamma _h \mu _v-a_{22} \mu _h \mu _v^2-\\ {}&a_{15} a_{42} \mu _h \mu _v-a_{22} a_{44} \mu _h \mu _v-a_{11} a_{22} \mu _v^2-a_{11} a_{22} a_{44} \mu _v+c_2 \mu _h \mu _v^2,\\ {\mathcal {S}}_0=&-a_{22} c_2 \mu _h \mu _v^2-a_{15} a_{42} c_2 \mu _h \mu _v-a_{22} a_{44} c_2 \mu _h \mu _v-a_{11} a_{22} c_2 \mu _v^2-a_{11} a_{22} a_{44} c_2 \mu _v-a_{11} a_{32} \gamma _h \mu _v^2-a_{11} a_{32} a_{44} \gamma _h \mu _v. \end{aligned}$$

Appendix 2

$$\begin{aligned} &A_2 A_5 A_7-\phi _1 \gamma _h A_4 A_6\\ &\quad =\bigg (1+\phi _1 \left( \frac{\beta _h V_i^{n}}{1+\alpha _v V_i^n}+\mu _h\right) \bigg ) \bigg ((I_h^n+b) +\phi _1 ((\mu _h+\delta _h)(I_h^{n}+b)\\ & \qquad +\mu _0 I_h^{n}+\mu _1 b)\bigg ) \bigg (1+\phi _1(\mu _h+\gamma _h)\bigg )-\phi _1^3 \gamma _h \bigg ( \frac{\beta _h V_i^n}{1+\alpha _v V_i^n}(I_h^n+b)\bigg ) \left( \mu _0+(\mu _1-\mu _0)\frac{b}{I_h^n+b}\right) \\ &\quad =A_2 A_7 \left( I_h^k+b\right) \left( 1+\phi _1(\mu _h+\delta _h)\right) +A_7 \phi _1 \left( 1+\phi _1 \mu _h\right) \left( \mu _0 I_h^n+\mu _1 b\right) \\ &\qquad + \phi _1 ^2 \left( 1+\phi _1 \mu _h\right) \left( \mu _0 I_h^n +\mu _1 b\right) \left( \dfrac{\beta _h V_i^n}{1+\alpha _v V_i^n}\right) >0. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, T., Srivastava, P.K. & Biswas, P. Application of the NSFD method in a Malaria model with nonlinear incidence and recovery rates. Eur. Phys. J. Plus 139, 257 (2024). https://doi.org/10.1140/epjp/s13360-024-05045-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05045-x

Navigation