Skip to main content
Log in

Insights from underground laboratory observations: attenuation-induced suppression of electromagnetic noise

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This study involved synchronous observations of electromagnetic (EM) fields at both ground level (+ 22 m above sea level) and a depth of − 848 m within the Huainan Underground Laboratory, China. The primary objective was to assess how an underground environment influences the temporal and spatial variations in EM fields. A conductive cover acts as a low-pass filter as expected, resulting in the attenuation of high-frequency (> 1 Hz) EM fields in the underground laboratory. Specifically, these fields were attenuated by factors ranging from approximately 10–100 times compared to ground level fields. To analyze the data, a digit low-pass filter with a 1-Hz cutoff frequency was applied consistently to both ground and underground datasets. Notably, the underground data exhibited significantly lower levels of contamination from background noise. Additionally, the Allan variance analysis suggested favorable conditions for long-term stable observations in an underground environment. Ground level data exhibited diurnal disturbance noise associated with human activities, a characteristic absent in the underground data. In conclusion, our study suggests that employing a comprehensive approach that combines digital filtering and attenuation suppression holds the potential to yield cleaner EM fields when compared to traditional ground observations. These findings carry valuable implications for EM field research, highlighting the benefits of conducting observations in underground settings to enhance data quality and stability.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability Statement

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request. The manuscript has associated data in a data repository.

Abbreviations

EM:

Electromagnetic

LSBB:

Laboratoire souterrain à Bas Bruit

HNLab:

Huainan underground laboratory

MT:

Magnetotelluric

E :

Electric

H :

Magnetic

X :

North–south direction

Y :

East–west direction

E x :

Electric field in north–south direction

E y :

Electric field in east–west direction

Hx :

Magnetic field in north–south direction

Hy :

Magnetic field in east–west direction

H z :

Magnetic field in vertical direction

E-field:

Electric field (mV/km)

H-field:

Magnetic field (nT)

PSD:

Power spectral density

PDFs:

Probability density functions

LP:

Low-pass filter

SQUID:

Superconducting quantum interference device

References

  1. J.P. Cheng, Q. Yue, S.Y. Wu, M.B. Shen, A review of international underground laboratory developments. Wuli 40(3), 149–154 (2011)

    Google Scholar 

  2. A. Bettini, New underground laboratories: Europe, Asia and the Americas. Phys. Dark Universe 4, 36–40 (2014). https://doi.org/10.1016/j.dark.2014.05.006

    Article  ADS  Google Scholar 

  3. L. Naticchioni, N. Iudochkin, V. Yushkin, E. Majorana, M. Perciballi, F. Ricci, V. Rudenko, Seismic noise background in the Baksan Neutrino observatory. Eur. Phys. J. Plus 137(1), 1–7 (2022). https://doi.org/10.1140/epjp/s13360-021-02317-8

    Article  Google Scholar 

  4. L.Á. Somlai, Z. Gráczer, P. Lévai, M. Vasúth, Z. Wéber, P. Ván, Seismic noise measures for underground gravitational wave detectors. Acta Geod. Geoph. 54(2), 301–313 (2019). https://doi.org/10.1007/s40328-019-00257-5

    Article  ADS  Google Scholar 

  5. B. Elsaka, O. Francis, J. Kusche, Calibration of the latest generation superconducting gravimeter iGrav-043 using the observatory superconducting gravimeter OSG-CT040 and the comparisons of their characteristics at the walferdange underground laboratory for geodynamics, Luxembourg. Pure Appl. Geophys. (2022). https://doi.org/10.1007/s00024-021-02938-1

    Article  Google Scholar 

  6. U. Villante, M. Vellante, M. De Lauretis, P. Cerulli-Irelli, L.J. Lanzerotti, L.V. Medford, C.G. Maclennan, Surface and underground measurements of geomagnetic variations in the micropulsations band. Geophys. Prospect. 46(2), 121–140 (1998). https://doi.org/10.1046/j.1365-2478.1998.00082.x

    Article  ADS  Google Scholar 

  7. A. Bettini, The Canfranc Underground Laboratory (LSC). Eur. Phys. J. Plus 127(9), 112 (2012). https://doi.org/10.1140/epjp/i2012-12112-1

    Article  Google Scholar 

  8. X. Bertou, The ANDES underground laboratory. Eur. Phys. J. Plus 127(9), 104 (2012). https://doi.org/10.1140/epjp/i2012-12104-1

    Article  Google Scholar 

  9. C.O. Dib, ANDES: An underground laboratory in South America. Phys. Procedia 61, 534–541 (2015). https://doi.org/10.1016/j.phpro.2014.12.118

    Article  ADS  CAS  Google Scholar 

  10. Y. Suzuki, K. Inoue, Kamioka underground observatories. Eur. Phys. J. Plus 127(9), 1–8 (2012). https://doi.org/10.1140/epjp/i2012-12111-2

    Article  Google Scholar 

  11. N.J.T. Smith, The SNOLAB deep underground facility. Eur. Phys. J. Plus 127(9), 108 (2012). https://doi.org/10.1140/epjp/i2012-12108-9

    Article  Google Scholar 

  12. I. Lawson, N. Smith, E.V. Jauregui, The SNOLAB deep underground research facility and its science program. Nucl. Phys. News 23(1), 5–9 (2013). https://doi.org/10.1080/10619127.2013.767692

    Article  ADS  Google Scholar 

  13. C. Ghag, Low background screening capability in the UK. AIP Conf. Proc. 1672(1), 020003 (2015). https://doi.org/10.1063/1.4927980

    Article  Google Scholar 

  14. G. Waysand, J. Marfaing, E. Pozzo di Borgo, R. Blancon, M. Pyée, M. Yedlin, P. Barroy, M. Auguste, D. Boyer, A. Cavaillou, J. Poupeney, C. Sudre, Earth–ionosphere couplings, magnetic storms, seismic precursors and TLEs: results and prospects of the [SQUID]2 system in the low-noise underground laboratory of Rustrel-Pays dʼApt. Comptes Rendus Phys. 12(2), 192–202 (2011). https://doi.org/10.1016/j.crhy.2011.02.008

    Article  ADS  CAS  Google Scholar 

  15. V. Andrieux, M. Auguste, D. Boyer, A. Cavaillou, C. Clarke, P. Febvre, S. Gaffet, S. Henry, H. Kraus, A. Lynch, V. Mikhailik, M. McCann, E. Pozzo di Borgo, C. Sudre, and G. Waysand, Characterisation of magnetic field fluctuations at different locations within the Laboratoire Souterrain à Bas Bruit using a new SQUID magnetometer prototype. i-DUST 2010, 02003 (2011). https://doi.org/10.1051/idust/201102003

  16. S. Henry, E. Pozzo di Borgo, C. Danquigny, A. Cavaillou, A. Cottle, S. Gaffet, M. Pipe, Monitoring geomagnetic signals of groundwater movement using multiple underground SQUID magnetometers. E3S Web Conf. 4, 02004 (2014). https://doi.org/10.1051/e3sconf/20140402004

    Article  Google Scholar 

  17. S. Henry, EPd. Borgo, C. Danquigny, B. Abi, Simultaneous geomagnetic monitoring with multiple SQUIDs and fluxgate sensors across underground laboratories. E3S Web Conf. 12, 02003 (2016). https://doi.org/10.1051/e3sconf/20161202003

    Article  Google Scholar 

  18. S. Gaffet, Y. Guglielmi, J. Virieux, G. Waysand, A. Chwala, R. Stolz, C. Emblanch, M. Auguste, D. Boyer, A. Cavaillou, Simultaneous seismic and magnetic measurements in the low-noise underground laboratory (LSBB) of Rustrel, France, during the 2001 January 26 Indian earthquake. Geophys. J. Int. 155(3), 981–990 (2003). https://doi.org/10.1111/j.1365-246X.2003.02095.x

    Article  ADS  Google Scholar 

  19. J. Bereš, H. Zeyen, G. Sénéchal, D. Rousset, S. Gaffet, Seismic anisotropy analysis at the low-noise underground laboratory (LSBB) of Rustrel (France). J. Appl. Geophys. 94, 59–71 (2013). https://doi.org/10.1016/j.jappgeo.2013.04.008

    Article  ADS  Google Scholar 

  20. S. Rosat, J. Hinderer, J.-P. Boy, F. Littel, D. Boyer, J.-D. Bernard, Y. Rogister, A. Mémin, S. Gaffet, First analyses of the iOSG-type superconducting gravimeter at the low noise underground laboratory (LSBB URL) of Rustrel, France. E3S Web Conf. 12, 06003 (2016)

    Article  Google Scholar 

  21. C. Gonnet, C. Barra, J.-B. Decitre, S. Rosat, and D. Boyer, The obtaining of the label reliability measure for gravity measurement by the LSBB underground lab. Int. Congress Metrol., 14004 (2017)

  22. B. Canuel, A. Bertoldi, L. Amand, E. Pozzo di Borgo, T. Chantrait, C. Danquigny, M. Dovale Álvarez, B. Fang, A. Freise, R. Geiger, J. Gillot, S. Henry, J. Hinderer, D. Holleville, J. Junca, G. Lefèvre, M. Merzougui, N. Mielec, T. Monfret, S. Pelisson, M. Prevedelli, S. Reynaud, I. Riou, Y. Rogister, S. Rosat, E. Cormier, A. Landragin, W. Chaibi, S. Gaffet, P. Bouyer, Exploring gravity with the MIGA large scale atom interferometer. Sci. Rep. 8(1), 14064 (2018). https://doi.org/10.1038/s41598-018-32165-z

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  23. J.P. Cheng, K.J. Kang, J.M. Li, J. Li, Y.J. Li, Q. Yue, Z. Zeng, Y.H. Chen, S.Y. Wu, X.D. Ji, H.T. Wong, The China Jinping underground laboratory and its early science. Annu. Rev. Nucl. Part. Sci. 67(1), 231–251 (2017). https://doi.org/10.1146/annurev-nucl-102115-044842

    Article  ADS  CAS  Google Scholar 

  24. H. Ma, W. Dai, Z. Zeng, T. Xue, L. Yang, Q. Yue, J. Cheng, Status and prospect of China Jinping underground laboratory. J. Phys. Conf. Ser. 2156(1), 012170 (2021). https://doi.org/10.1088/1742-6596/2156/1/012170

    Article  Google Scholar 

  25. L. Naticchioni, V. Boschi, E. Calloni, M. Capello, A. Cardini, M. Carpinelli, S. Cuccuru, M. D’Ambrosio, R. De Rosa, M. Di Giovanni, D. D’Urso, I. Fiori, S. Gaviano, C. Giunchi, E. Majorana, C. Migoni, G. Oggiano, M. Olivieri, F. Paoletti, M.C. Tringali, Characterization of the Sos Enattos site for the Einstein telescope. J. Phys. Conf. Ser. 1468, 012242 (2020). https://doi.org/10.1088/1742-6596/1468/1/012242

    Article  Google Scholar 

  26. L. Naticchioni, M. Perciballi, F. Ricci, E. Coccia, V. Malvezzi, F. Acernese, F. Barone, G. Giordano, R. Romano, M. Punturo, R. De Rosa, P. Calia, G. Loddo, Microseismic studies of an underground site for a new interferometric gravitational wave detector. Class. Quantum Gravity 31(10), 105016 (2014). https://doi.org/10.1088/0264-9381/31/10/105016

    Article  ADS  Google Scholar 

  27. S. Rosat, J. Hinderer, J.P. Boy, F. Littel, J.-D. Bernard, D. Boyer, A. Mémin, Y. Rogister, S. Gaffet, A two-year analysis of the iOSG-24 superconducting gravimeter at the low noise underground laboratory (LSBB URL) of Rustrel, France: environmental noise estimate. J. Geodyn. 119, 1–8 (2018). https://doi.org/10.1016/j.jog.2018.05.009

    Article  Google Scholar 

  28. G. Waysand, P. Barroy, R. Blancon, S. Gaffet, C. Guilpin, J. Marfaing, E. Pozzo Di Borgo, M. Pyée, M. Auguste, D. Boyer, A. Cavaillou, Seismo-ionosphere detection by underground SQUID in low-noise environment in LSBB-Rustrel, France. Eur. Phys. J. Appl. Phys. 47(1), 12705 (2009). https://doi.org/10.1051/epjap:2008186

    Article  Google Scholar 

  29. Q.D. Deng, P.Z. Zhang, Y.K. Ran, X.P. Yang, W. Min, Q.Z. Chu, Basic characteristics of active tectonics of China. Sci China Ser D Earth Sci 46(4), 356–372 (2003). https://doi.org/10.1360/03yd9032

    Article  Google Scholar 

  30. Y.F. Zheng, Z.F. Zhao, R.X. Chen, Ultrahigh-pressure metamorphic rocks in the Dabie-Sulu orogenic belt: compositional inheritance and metamorphic modification. Geol. Soc. London Spec. Publ. 474(1), 89–132 (2019). https://doi.org/10.1144/SP474.9

    Article  ADS  Google Scholar 

  31. Y. Wang, Y.F. Jian, Y.S. He, Q.Q. Miao, J.W. Teng, Z.M. Wang, L.L. Rong, L.Q. Qiu, C.L. Xie, Q.S. Zhang, Underground laboratories and deep underground geophysical observations. Chin. J. Geophys. 65(12), 4527–4542 (2022)

    Google Scholar 

  32. Y. Wang, Y.X. Yang, H.P. Sun, C.L. Xie, Q.S. Zhang, X.M. Cui, C. Chen, Y.S. He, Q.Q. Miao, C.M. Mu, L.H. Guo, J.W. Teng, Observation and research of deep underground multi-physical fields—Huainan −848 m deep experiment. Sci. China Earth Sci. 66, 54–70 (2023). https://doi.org/10.1007/s11430-022-9998-2

    Article  PubMed  ADS  Google Scholar 

  33. M.M. Zhang, X.D. Chen, J.Q. Xu, X.M. Cui, M. Liu, L.L. Xing, C.M. Mu, H.P. Sun, A preliminary analysis of gravity noise levels at the deep geophysical experimental field in Huainan. Adv. Earth Sci. 36(5), 500 (2021)

    Google Scholar 

  34. C. Chen, Y. Wang, G.Y. Guo, Y.W. Cao, S. Li, D.M. Zhang, Y.F. Jian, C. Wang, Deep underground observation comparison of rotational seismometers. Chin. J. Geophys. 65(12), 4569–4582 (2022)

    Google Scholar 

  35. Z.Y. Wang, Y. Wang, R.G. Xu, T. Liu, G.Y. Fu, H.P. Sun, Environmental noise assessment of underground gravity observation in Huainan and the potential capability of detecting slow earthquake. Chin. J. Geophys. 65(12), 4555–4568 (2022)

    Google Scholar 

  36. T. Xu, Z.J. Zhang, X. Tian, B.F. Liu, Z. Bai, Q. Lü, J.W. Teng, Crustal structure beneath the middle-lower Yangtze metallogenic belt and its surrounding areas: constraints from active source seismic experiment along the Lixin to Yixing profile in East China. Acta Petrologica Sinica. 30, 918–930 (2014)

    Google Scholar 

  37. J.K. Qiang, X.Y. Wang, J.T. Tang, W. Pan, Q.J. Zhang, The geological structures along Huainan-Liyang magnetotelluric profile: constraints from MT data. Acta Petrologica Sinica. 30(4), 957–965 (2014)

    Google Scholar 

  38. Phoenix Geophysics. Phoenix-geophysics, products. Available online: http://www.phoenix-geophysics.com/products/. Accessed 8 Feb 8 2023

  39. Lemi LLC. LEMI Sensors. Available online: https://lemisensors.com/. Accessed 8 Feb 8 2023

  40. Orange Lamp. Aether Magnetotelluric System. Available online: https://en.orangelamp.com/electrical/42.html. Accessed 8 Feb 2023

  41. J.Z. Hu, D.C. Liu, Q.F. Liao, Y. Yan, S.S. Liang, Electromagnetic vibration noise analysis of transformer windings and core. IET Electr. Power Appl. 10(4), 251–257 (2016)

    Article  Google Scholar 

  42. D. McNamara, R. Buland, Ambient noise levels in the continental United States. Bull. Seismol. Soc. Am. 94, 1517–1527 (2004). https://doi.org/10.1785/012003001

    Article  Google Scholar 

  43. W.T. Wan, C. Chen, W. Yun, C. Mu, Y.S. He, W. Chao, Comparative analysis of surface and deep underground seismic ambient noise. Chin. J. Geophys. 67(2), 793–808 (2024)

    Google Scholar 

  44. D.W. Allan, Statistics of atomic frequency standards. Proc. IEEE 54(2), 221–230 (1966). https://doi.org/10.1109/PROC.1966.4634

    Article  ADS  Google Scholar 

  45. IEEE. IEEE Recommended Practice for Inertial Sensor Test Equipment, Instrumentation, Data Acquisition, and Analysis. IEEE Std 1554–2005, 1–145 (2013). https://doi.org/10.1109/IEEESTD.2013.6673990

  46. N.F. Zhang, Allan variance of time series models for measurement data. Metrologia 45(5), 549 (2008)

    Article  ADS  Google Scholar 

  47. K. Draganová, F. Kmec, J. Blažek, D. Praslička, J. Hudák, M. Laššák, Noise analysis of magnetic sensors using Allan variance. Acta Phys. Pol. A 126(1), 394–395 (2014)

    Article  ADS  Google Scholar 

  48. T.J. Witt, Using the Allan variance and power spectral density to characterize DC nanovoltmeters. IEEE Trans. Instrum. Meas. 50(2), 445–448 (2001)

    Article  ADS  Google Scholar 

  49. S. Bonnefoy-Claudet, F. Cotton, P.-Y. Bard, The nature of noise wavefield and its applications for site effects studies: a literature review. Earth Sci. Rev. 79(3), 205–227 (2006). https://doi.org/10.1016/j.earscirev.2006.07.004

    Article  ADS  Google Scholar 

  50. T.K. Hong, J. Lee, G. Lee, J. Lee, S. Park, Correlation between ambient seismic noises and economic growth. Seismol. Res. Lett. 91(4), 2343–2354 (2020). https://doi.org/10.1785/0220190369

    Article  Google Scholar 

  51. H. Nimiya, T. Ikeda, T. Tsuji, Temporal changes in anthropogenic seismic noise levels associated with economic and leisure activities during the COVID-19 pandemic. Sci. Rep. 11(1), 20439 (2021). https://doi.org/10.1038/s41598-021-00063-6

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  52. J.C. Groos, J.R.R. Ritter, Time domain classification and quantification of seismic noise in an urban environment. Geophys. J. Int. 179(2), 1213–1231 (2009). https://doi.org/10.1111/j.1365-246X.2009.04343.x

    Article  ADS  Google Scholar 

  53. Zonge International. Discovery International 2013 PDAC meeting presentation of manufacturers’ published noise-level data. Available online: http://zonge.com/instruments-home/instruments/geophysical-sensors-magnetometers. Accessed 23 Nov2022

  54. A.M. Prystai, V.O. Pronenko, Improving of electrical channels for magnetotelluric sounding instrumentation. Geosci. Instrum. Method. Data Syst. 4(2), 149–154 (2015). https://doi.org/10.5194/gi-4-149-2015

    Article  ADS  CAS  Google Scholar 

  55. G.Z. Zhao, Y.X. Bi, L.F. Wang, B. Han, X. Wang, Q.B. Xiao, J.T. Cai, Y. Zhan, X.B. Chen, J. Tang, J.J. Wang, Advances in alternating electromagnetic field data processing for earthquake monitoring in China. Sci. China Earth Sci. 58(2), 172–182 (2015). https://doi.org/10.1007/s11430-014-5012-3

    Article  ADS  Google Scholar 

  56. G.Z. Zhao, X.M. Zhang, J.T. Cai, Y. Zhan, Q.Z. Ma, J. Tang, X.B. Du, B. Han, L.F. Wang, X.B. Chen, Q.B. Xiao, X.Y. Sun, Z.Y. Dong, J.J. Wang, J.H. Zhang, Y. Fan, T. Ye, A review of seismo-electromagnetic research in China. Sci. China Earth Sci. (2022). https://doi.org/10.1007/s11430-021-9930-5

    Article  PubMed  PubMed Central  Google Scholar 

  57. R.H. Tyler, T.B. Sanford, M.J. Unsworth, Propagation of electromagnetic fields in the coastal ocean with applications to underwater navigation and communication. Radio Sci. 33(4), 967–987 (1998). https://doi.org/10.1029/98RS00748

    Article  ADS  Google Scholar 

  58. M. Manteghi, A navigation and positioning system for unmanned underwater vehicles based on a mechanical antenna. In 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. San Diego, CA, USA.

  59. W.Y. Xu, Physics of electromagnetic phenomena of the Earth. Vol. 336. Hefei, China: Press of University of Science and Technology of China. 558 (2009)

  60. S.Y. Wu, S. Yao, X.D. Feng, W.B. Wei, Y.T. Yin, L.T. Zhang, H. Dong, G.W. Wang, J.L. Liu, Y.Q. Yu, D. Wei, Features and source current of long-period induced geoelectric field during magnetic storms: a case study. Space Weather 18(1), e2019SW002298 (2020). https://doi.org/10.1029/2019sw002298

    Article  ADS  Google Scholar 

  61. Y. Yamazaki, A. Maute, Sq and EEJ—a review on the daily variation of the geomagnetic field caused by ionospheric dynamo currents. Space Sci. Rev. 206(1–4), 299–405 (2017)

    Article  ADS  Google Scholar 

  62. N.-S. Asimopolos, L. Asimopolos, and A.-A. Asimopolos, Spectral analysis tools for identifying the geomagnetic field pattern. In 21st EGU General Assembly, EGU2019. Vienna, Austria.

  63. D.C. Tan, L.W. Wang, J.L. Zhao, J.L. Xi, D.P. Liu, H. Yu, J.Y. Chen, Influence factors of harmonic waves and directional waveforms for the tidal geoelectrical field. Chin. J. Geophys. 54(4), 470–484 (2011)

    Article  Google Scholar 

  64. Q. Ye, X.B. Du, K.C. Zhou, N. Li, Z.H. Ma, Spectrum characteristics of geoelectric field variation. Earthq. Sci. 20(4), 405 (2007)

    Article  Google Scholar 

  65. J.J. Love, E.J. Rigler, The magnetic tides of Honolulu. Geophys. J. Int. 197(3), 1335–1353 (2014). https://doi.org/10.1093/gji/ggu090

    Article  ADS  Google Scholar 

  66. A. Kelbert, A. Schultz, G. Egbert, Global electromagnetic induction constraints on transition-zone water content variations. Nature 460(7258), 1003–1006 (2009). https://doi.org/10.1038/nature08257

    Article  PubMed  ADS  CAS  Google Scholar 

  67. J. Sun, A. Kelbert, G.D. Egbert, Ionospheric current source modeling and global geomagnetic induction using ground geomagnetic observatory data. J. Geophys. Res. Solid Earth 120(10), 6771–6796 (2015). https://doi.org/10.1002/2015jb012063

    Article  ADS  Google Scholar 

  68. G.D. Egbert, P. Alken, A. Maute, H. Zhang, Modelling diurnal variation magnetic fields due to ionospheric currents. Geophys. J. Int. 225(2), 1086–1109 (2021). https://doi.org/10.1093/gji/ggaa533

    Article  ADS  Google Scholar 

  69. W.Y. Bu, H.Q. Zhang, Q.H. Huang, Review of geomagnetically induced currents. Rev. Geophys. Planet. Phys. 53(1), 53–65 (2022). https://doi.org/10.19975/j.dqyxx.2021-040

    Article  Google Scholar 

  70. X.C. Gou, L. Li, Y.T. Zhang, B. Zhou, Y.Y. Feng, B.J. Cheng, T. Raita, J. Liu, Z. Zhima, X.H. Shen, Ionospheric Pc1 waves during a storm recovery phase observed by the China seismo-electromagnetic satellite. Ann. Geophys. 38(3), 775–787 (2020). https://doi.org/10.5194/angeo-38-775-2020

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Natural Science Foundation of China (62127815, 42150201, U1839208, 42074083) and the China Scholarships Council. We extend our gratitude to the Academy of Military Sciences, the Huaihe Energy Company Limited, and the Anhui University of Science and Technology for providing safety guarantees and equipment maintenance during the observations. We also appreciate the Chinese Academy of Geological Sciences and the Beijing Orange Lamp Geophysical Exploration Co., Ltd for providing parts of the EM instruments used in this study. Additionally, we thank the employees and students from the China University of Geosciences (Beijing) who participated in the experiments. Finally, we would like to thank Oskar Rydman for his valuable and constructive suggestions on the manuscript. We used the high-performance computing facilities at China University of Geosciences (Beijing) for data processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Wang.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13295 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, C., Chen, C., Liu, C. et al. Insights from underground laboratory observations: attenuation-induced suppression of electromagnetic noise. Eur. Phys. J. Plus 139, 218 (2024). https://doi.org/10.1140/epjp/s13360-024-05033-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05033-1

Navigation