Skip to main content
Log in

New method for linearization of non-autonomous nonlinear real-order systems

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The linearization approach is widely known and can be used to analyze and understand the governing flows of many real-order nonlinear systems. In this paper, we provide a new method of linearization that gives useful tools for the local and/or global asymptotic stability analysis of many such nonlinear systems defined in the sense of Caputo derivative. The new results that concern order-dependent conditions based on comparison linearization theorems with the introduction of a new \(\mathcal {L_{\infty }}\) function are proposed. The implications of the introduced theoretical approach are illustrated to a nonlinear system when initial time is negative and to a positive initial-time real-order Lorenz system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availibility

The manuscript has associated data in a data repository.

References

  1. I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, 1999)

    Google Scholar 

  2. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, Amsterdam, 2006)

    Google Scholar 

  3. H.K. Khalil, Nonlinear Systems (Prentice Hall, United Kingdom, 2002)

    Google Scholar 

  4. I. Petráš, Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation (Springer, Heidelberg, 2011)

    Book  Google Scholar 

  5. T. Kaczorek, Selected Problems of Fractional Systems Theory (Springer, Heidelberg, 2011)

    Book  Google Scholar 

  6. T. Kaczorek, K. Rogowski, Fractional Linear Systems and Electrical Circuits (Springer, Heidelberg, 2015)

    Book  Google Scholar 

  7. W. Deng, C. Li, J. Lü, Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dyn. 48, 409–416 (2007). https://doi.org/10.1007/s11071-006-9094-0

    Article  MathSciNet  Google Scholar 

  8. K. Diethelm, N.J. Ford, A.D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29, 3–22 (2002). https://doi.org/10.1023/A:1016592219341

    Article  MathSciNet  Google Scholar 

  9. B.K. Lenka, S.N. Bora, New asymptotic stability results for nonautonomous nonlinear fractional order systems. IMA J. Math. Control Inf. 39, 951–967 (2022). https://doi.org/10.1093/imamci/dnac019

    Article  MathSciNet  Google Scholar 

  10. B.K. Lenka, S.N. Bora, New global asymptotic stability conditions for a class of nonlinear time-varying fractional systems. Eur. J. Control 63, 97–106 (2022). https://doi.org/10.1016/j.ejcon.2021.09.008

    Article  MathSciNet  Google Scholar 

  11. J.A. Gallegos, N. Aguila-Camacho, M. Duarte-Mermoud, Vector Lyapunov-like functions for multi-order fractional systems with multiple time-varying delays. Commun. Nonlinear Sci. Numer. Simul. 83, 105089 (2020). https://doi.org/10.1016/j.cnsns.2019.105089

    Article  MathSciNet  Google Scholar 

  12. B.K. Lenka, Fractional comparison method and asymptotic stability results for multivariable fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 69, 398–415 (2019). https://doi.org/10.1016/j.cnsns.2018.09.016

    Article  MathSciNet  ADS  Google Scholar 

  13. B.K. Lenka, S. Banerjee, Sufficient conditions for asymptotic stability and stabilization of autonomous fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 56, 365–379 (2018). https://doi.org/10.1016/j.cnsns.2017.08.005

    Article  MathSciNet  ADS  Google Scholar 

  14. Z. Hammouch, T. Mekkaoui, Chaos synchronization of a fractional nonautonomous system. Nonautonomous Dyn. Syst. 1, 61–71 (2014). https://doi.org/10.2478/msds-2014-0001

    Article  MathSciNet  Google Scholar 

  15. W.H. Deng, C.P. Li, Chaos synchronization of the fractional Lü system. Phys. A Stat. Mech. Appl. 353, 61–72 (2005). https://doi.org/10.1016/j.physa.2005.01.021

    Article  Google Scholar 

  16. C.A. Monje, Y.Q. Chen, B.M. Vinagre, D. Xue, V. Feliu-Batlle, Fractional-Order Systems and Controls: Fundamentals and Applications (Springer, London, 2010)

    Book  Google Scholar 

  17. Z.M. Ge, W.R. Jhuang, Chaos, control and synchronization of a fractional order rotational mechanical system with a centrifugal governor. Chaos Solitons Fractals 33, 270–289 (2007). https://doi.org/10.1016/j.chaos.2005.12.040

    Article  ADS  Google Scholar 

  18. P. Gholamin, A.H.R. Sheikhani, A. Ansari, Stabilization of a new commensurate/incommensurate fractional order chaotic system. Asian J. Control 23, 882–893 (2021). https://doi.org/10.1002/asjc.2289

    Article  MathSciNet  Google Scholar 

  19. Y. Li, Y.Q. Chen, I. Podlubny, Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica 45, 1965–1969 (2009). https://doi.org/10.1016/j.automatica.2009.04.003

    Article  MathSciNet  Google Scholar 

  20. Y. Li, Y.Q. Chen, I. Podlubny, Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag–Leffler stability. Comput. Math. Appl. 59, 1810–1821 (2010). https://doi.org/10.1016/j.camwa.2009.08.019

    Article  MathSciNet  Google Scholar 

  21. H. Delavari, D. Baleanu, J. Sadati, Stability analysis of Caputo fractional-order nonlinear systems revisited. Nonlinear Dyn. 67, 2433–2439 (2012). https://doi.org/10.1007/s11071-011-0157-5

    Article  MathSciNet  Google Scholar 

  22. J. Yu, H. Hu, S. Zhou, X. Lin, Generalized Mittag–Leffler stability of multi-variables fractional order nonlinear systems. Automatica 49, 1798–1803 (2013). https://doi.org/10.1016/j.automatica.2013.02.041

    Article  MathSciNet  Google Scholar 

  23. J.A. Gallegos, M.A. Duarte-Mermoud, On the Lyapunov theory for fractional order systems. Appl. Math. Comput. 287, 161–170 (2016). https://doi.org/10.1016/j.amc.2016.04.039

    Article  MathSciNet  Google Scholar 

  24. H.T. Tuan, H. Trinh, Stability of fractional-order nonlinear systems by Lyapunov direct method. IET Control Theory Appl. 12, 2417–2422 (2018). https://doi.org/10.1049/iet-cta.2018.5233

    Article  MathSciNet  Google Scholar 

  25. Z. Wang, D. Yang, H. Zhang, Stability analysis on a class of nonlinear fractional-order systems. Nonlinear Dyn. 86, 1023–1033 (2016). https://doi.org/10.1007/s11071-016-2943-6

    Article  MathSciNet  Google Scholar 

  26. C. Li, Y. Ma, Fractional dynamical system and its linearization theorem. Nonlinear Dyn. 71, 621–633 (2013). https://doi.org/10.1007/s11071-012-0601-1

    Article  MathSciNet  Google Scholar 

  27. C. Wu, Advances in analysis of Caputo fractional-order nonautonomous systems: from stability to global uniform asymptotic stability. Fractals 29, 2150092 (2021). https://doi.org/10.1142/S0218348X21500924

    Article  ADS  Google Scholar 

  28. B.K. Lenka, S.N. Bora, Nonnegativity, convergence and bounds of non-homogeneous linear time-varying real-order systems with application to electrical circuit system. Circuits Syst. Signal Process., pp. 1–26 (2023). https://doi.org/10.1007/s00034-023-02368-5

  29. E. Ahmed, A.M.A. El-Sayed, H.A.A. El-Saka, Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models. J. Math. Anal. Appl. 325, 542–553 (2007). https://doi.org/10.1016/j.jmaa.2006.01.087

    Article  MathSciNet  Google Scholar 

  30. M.S. Tavazoei, M. Haeri, Chaotic attractors in incommensurate fractional order systems. Phys. D Nonlinear Phenomena 237, 2628–2637 (2008). https://doi.org/10.1016/j.physd.2008.03.037

    Article  MathSciNet  ADS  Google Scholar 

  31. M. Wang, X. Liao, Y. Deng, Z. Li, Y. Su, Y. Zeng, Dynamics, synchronization and circuit implementation of a simple fractional-order chaotic system with hidden attractors. Chaos Solitons Fractals 130, 109406 (2020). https://doi.org/10.1016/j.chaos.2019.109406

    Article  MathSciNet  Google Scholar 

  32. C. Li, G. Chen, Chaos and hyperchaos in the fractional-order Rössler equations. Phys. A Stat. Mech. Appl. 341, 55–61 (2004)

    Article  Google Scholar 

  33. G. Peng, Y. Jiang, Two routes to chaos in the fractional Lorenz system with dimension continuously varying. Phys. A Stat. Mech. Appl. 389, 4140–4148 (2010)

    Article  MathSciNet  CAS  Google Scholar 

  34. V.V. Kulish, J.L. Lage, Application of fractional calculus to fluid mechanics. J. Fluids Eng. 124, 803–806 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

Bichitra Kumar Lenka acknowledges the Indian Institute of Technology Guwahati for providing essential support.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed to the study conception, design and material preparation. The authors read and approved the final manuscript.

Corresponding author

Correspondence to Bichitra Kumar Lenka.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lenka, B.K., Bora, S.N. New method for linearization of non-autonomous nonlinear real-order systems. Eur. Phys. J. Plus 139, 249 (2024). https://doi.org/10.1140/epjp/s13360-024-04995-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-04995-6

Navigation