Skip to main content
Log in

Group delayed phase switching of Gaussian light pulses via a thermal atomic medium

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We show group delayed phase switching of a Gaussian pulse transmitting through a thermal four-level atomic medium using relative phase of the cyclically driven one microwave and two optical fields. The present scheme explains that in the presence of the atom’s dephasing reservoir, a plane-polarized probe light through the medium exhibits double electromagnetically induced transparency (EIT). Upon tuning the relative phase of the coupling fields, the double EIT converts into two asymmetric mirror inversion-like single EIT phenomenon. In parallel, we develop an input–output theory for probing Gaussian pulse through the thermal medium with a nonlinear dispersion to generate group delay (advancement) and switching of the group delay (advancement) using the relative phase of the driving fields. For collinear driving fields, the transmission of the pulses through the medium appears irrespective of the wave-vector mismatch and Doppler broadening effect. Consequently, the group delay and the group delay phase switching perform without measurable pulse distortion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

No data associated in the manuscript.

References

  1. M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, London, 1997)

    Book  Google Scholar 

  2. M. Fleischhauer, A. Imamoglu, J. Marangos, Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633 (2005)

    Article  ADS  CAS  Google Scholar 

  3. S.E. Harris, J.E. Field, A. Imamoglu, Nonlinear optical processes using electromagnetically induced transparency. Phys. Rev. Lett. 64, 1107 (1990)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. S.E. Harris, J.E. Field, A. Kasapi, Dispersive properties of electromagnetically induced transparency. Phys. Rev. A 46, R29 (1992)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. S.E. Harris, Electromagnetically induced transparency. Phys. Today 50, 36 (1997)

    Article  CAS  Google Scholar 

  6. K.J. Boller, A. Imamoglu, S.E. Harris, Observation of electromagnetically induced transparency. Phys. Rev. Lett. 66, 2593 (1991)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. M. Xiao, Y. Li, S. Jin, J.G. Banacloche, Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms. Phys. Rev. Lett. 74, 666 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. J.G. Banacloche, Y. Li, S. Jin, M. Xiao, Electromagnetically induced transparency in ladder-type in homogeneously broadened media: theory and experiment. Phys. Rev. A 51, 576 (1995)

    Article  ADS  Google Scholar 

  9. A.B. Matsko, O. Kocharovskaya, Y. Rostovtsev, G.R. Welch, A.S. Zibrov, M.O. Scully, Slow, ultraslow, stored, and frozen light. Adv. At. Mol. Opt. Phys. 46, 191 (2001)

    Article  ADS  CAS  Google Scholar 

  10. V. Wong, R. Boyd, C. Stroud, R. Bennink, D. Aronstein, Q-H. Park, “Quantum Electronics and Laser Science Conference, In: 2001 QELS ’01. Technical Digest. Summaries of Papers Presented pp. 30, 11–11 May, (2001)

  11. A.H. Safavi-Naeini et al., Electromagnetically induced transparency and slow light with optomechanics. Nature 472, 69 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. M.J. Akram, F. Ghafoor, F. Saif, Electromagnetically induced transparency and tunable fano resonances in hybrid optomechanics. J. Phys. B At. Mol. Opt. Phys. 48, 065502 (2015)

    Article  ADS  Google Scholar 

  13. M.J. Akram, F. Ghafoor, M.M. Khan, F. Saif, Control of Fano resonances and slow light using Bose-Einstein condensates in a nanocavity. Phys. Rev. A 95, 023810 (2017)

    Article  ADS  Google Scholar 

  14. A.K. Mohapatra, T.R. Jackson, C.S. Adams, Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency. Phys. Rev. Lett. 98, 113003 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  15. M. Saffman, T.G. Walker, K. Mølmer, Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313 (2010)

    Article  ADS  CAS  Google Scholar 

  16. H. Wang, D.J. Goorskey, W.H. Burkett, M. Xiao, Cavity-linewidth narrowing by means of electromagnetically induced transparency. Opt. Lett. 25, 1732 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  17. R.P. Abel, A.K. Mohapatra, M.G. Bason, J.D. Pritchard, K.J. Weatherill, U. Raitzsch, C.S. Adams, Laser frequency stabilization to excited state transitions using electromagnetically induced transparency in a cascade system. Appl. Phys. Lett. 94, 071107 (2009)

    Article  ADS  Google Scholar 

  18. Y.-F. Chen, Y.-M. Kao, W.-H. Lin, I.A. Yu, Phase variation and shape distortion of light pulses in electromagnetically induced transparency media. Phys. Rev. A 74, 063807 (2006)

    Article  ADS  Google Scholar 

  19. C.-Y. Wang, Low-light-level all-optical switching. Opt. Lett. 31, 2350 (2006)

    Article  ADS  PubMed  Google Scholar 

  20. T. Chaneliere, D. Matsukevich, S. Jenkins, S. Lan, A. Kennedy, A. Kuzmich, Storage and retrieval of single photons transmitted between remote quantum memories. Nature 438, 833 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  21. A.W. Brown, M. Xiao, All-optical switching and routing based on an electromagnetically induced absorption grating. Opt. Lett. 30, 699 (2005)

    Article  ADS  PubMed  Google Scholar 

  22. S.E. Harris, Y. Yamamoto, Photon switching by quantum interference. Phys. Rev. Lett. 81, 3611 (1998)

    Article  ADS  CAS  Google Scholar 

  23. D. Wang, C. Liu, C. Xiao, J. Zhang, H.M.M. Alotaibi, B.C. Sanders, L.G. Wang, S. Zhu, Strong coherent light amplification with double EIT coherences. Sci. Rep. 7, 5796 (2017)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  24. B. Kim et al., All-optical image switching in a double-\(\Lambda\) system. Opt. Express 21, 14215 (2013)

    Article  ADS  PubMed  Google Scholar 

  25. S.L. Danielsen, P.B. Hansen, K.E. Stubkjaer, Wavelength conversion in optical packet switching. J. Lightwave Technol. 16, 2095 (1998)

    Article  ADS  Google Scholar 

  26. H. Schmidt, R.J. Ram, All-optical wavelength converter and switch based on electromagnetically induced transparency. Appl. Phys. Lett. 76, 3173 (2000)

    Article  ADS  CAS  Google Scholar 

  27. H. Ishikawa, Ultrafast All-Optical Signal Processing Devices (Wiley, Singapore, 2008)

    Book  Google Scholar 

  28. D. Nesset, T. Kelly, D. Marcenac, All-optical wavelength conversion using SOA nonlinearities. IEEE Commun. Mag. 36, 56 (1998)

    Article  Google Scholar 

  29. N. Edagawa, M. Suzuki, S. Yamamoto, Novel wavelength converter using an electroabsorption modulator. IEICE Trans. Electron. E 81, 1251 (1998)

    Google Scholar 

  30. H. Yoshida, T. Mozume, A. Neogi, O. Wada, Ultrafast all-optical switching at 1.3 \(\mu\)m/1.55 \(\mu\)m using novel InGaAs/AlAsSb/InP coupled double quantum well structure for intersubband transitions. Electron. Lett. 35, 1103 (1999)

    Article  ADS  CAS  Google Scholar 

  31. A. Neogi, T. Mozume, H. Yoshida, O. Wada, Intersubband transitions at 1.3 and 1.55 \(\mu\)m in a novel coupled InGaAs-AlAsSb double-quantum-well structure. IEEE Photon. Technol. Lett. 11, 632 (1999)

    Article  ADS  Google Scholar 

  32. S.J.B. Yoo, Wavelength conversion technologies for WDM network applications. Lightwave Technol. 14, 955 (1996)

    Article  ADS  Google Scholar 

  33. F. Ghafoor, R.G. Nazmitdinov, Triplet absorption spectroscopy and electromagnetically induced transparency. J. Phys. B At. Mol. Opt. Phys. 49, 175502 (2016)

    Article  ADS  Google Scholar 

  34. G. Tiaz, A.E. Shahalyev, A. Ashiq, F. Ghafoor, Multiple color electromagnetically induced switching using a five-level atomic medium. IEEE J. Quantum Electron. 55(4), 9200110 (2019)

    Article  CAS  Google Scholar 

  35. H.M.M. Alotaibi, B.C. Sanders, Double-double electromagnetically induced transparency with amplification. Phys. Rev. A 89, 021802(R) (2014)

    Article  ADS  Google Scholar 

  36. A. Majumdar, M. Bajcsy, D. England, J. Vuckovic, All optical switching with a single quantum dot strongly coupled to a photonic crystal cavity. IEEE Quantum Electron. 18, 1812 (2012)

    Article  CAS  Google Scholar 

  37. H. Kang, G. Hernandez, J. Zhang, Y. Zhu, Phase-controlled light switching at low light levels. Phys. Rev. A 73, 011802R (2006)

    Article  ADS  Google Scholar 

  38. H. Kang, Bongjune Kim, Y.H. Park, C.H. Oh, I.W. Lee, Phase-controlled switching by interference between incoherent fields in a double-system. Opt. Express 19, 4113 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  39. H. Tanaka, H. Niwa, K. Hayami, S. Furue, K. Nakayama, T. Kohmoto, M. Kunitomo, Y. Fukuda, Propagation of optical pulses in a resonantly absorbing medium: observation of negative velocity in Rb vapor. Phys. Rev. A 68(5), 053801 (2003)

    Article  ADS  Google Scholar 

  40. G.S. Agarwal, T.N. Dey, S. Menon, Microwave-controlled efficient Raman sub-harmonic generation. Phys. Rev. A 64(5), 053809 (2001)

    Article  ADS  Google Scholar 

  41. M. Sahrai, H. Tajalli, K.T. Kapale, M.S. Zubairy, Tunable phase control for subluminal to superluminal light propagation. Phys. Rev. A 70(2), 023813 (2004)

    Article  ADS  Google Scholar 

  42. K. Kim, H.S. Moon, C. Lee, S.K. Kim, J.B. Kim, Observation of arbitrary group velocities of light from superluminal to subluminal on a single atomic transition line. Phys. Rev. A 68(1), 013810 (2003)

    Article  ADS  Google Scholar 

  43. Bortman-Arbiv, A.D. Wilson-Gordon, H. Friedmann, Phase control of group velocity: from subluminal to superluminal light propagation. Phys. Rev. A 63, 043818 (2001)

    Article  ADS  Google Scholar 

  44. J.K. Saaswath, K.N. Pradosh, K.V. Adwaith, B.C. Snaders, F. Bretenaker, A. Narayanani, Microwave-driven generation and group delay control of optical pulses from an ultra-dilute atomic ensemble. Opt. Express 29, 15940 (2021)

    Article  ADS  CAS  PubMed  Google Scholar 

  45. C.J. Chunnilall, I.P. Degiovanni, S. Kück, I. Müller, A.G. Sinclair, Metrology of single-photon sources and detectors: a review. Opt. Eng. 53, 081910 (2014)

    Article  ADS  Google Scholar 

  46. L. Schweickert, K.D. Jöns, K.D. Zeuner, S.F. Covre-da-Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, V. Zwiller, On-demand generation of background-free single photons from a solid-state source. Appl. Phys. Lett. 112, 093106 (2018)

    Article  ADS  Google Scholar 

  47. X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, J.-W. Pan, On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett. 116, 020401 (2016)

    Article  ADS  PubMed  Google Scholar 

  48. Z. Peng, S. De Graaf, J.S. Tsai, O. Astafiev, Tuneable on-demand single-photon source in the microwave range. Nat. Commun. 7(1), 12588 (2016)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. J.-Y. Hu, B. Yu, M.-Y. Jing, L.-T. Xiao, S.-T. Jia, G.-Q. Qin, G.-L. Long, Experimental quantum secure direct communication with single photons. Sci. Appl. 5(9), e16144 (2016)

    CAS  Google Scholar 

  50. A. Jain, P.V. Sakhiya, R.K. Bahl, Design and development of weak coherent pulse source for quantum key distribution system, In: 2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), pp. 1 (2020)

  51. M.D. Lukin, S.F. Yelin, M. Fleischhauer, Phys. Rev. Lett. 84, 4232 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  52. A. Dantan, M. Pinard, Entanglement of atomic ensembles by trapping correlated photon states. Phys. Rev. A 69, 043810 (2004)

    Article  ADS  Google Scholar 

  53. K.M. Birnbaum, A. Boca, R. Miller, A.D. Boozer, T.E. Northup, H.J. Kimble, Photon blockade in an optical cavity with one trapped atom. Nature 436, 87–90 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  54. J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, S. Gotzinger, V.A. Sandoghdar, A single-molecule optical transistor. Nature 460, 76 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  55. S.E. Harris, L.V. Hau, Nonlinear optics at low light levels. Phys. Rev. Lett. 82, 4611–4614 (1999)

    Article  ADS  CAS  Google Scholar 

  56. S. Saha, B.T. Diroll, M.G. Ozlu et al., Engineering the temporal dynamics of all-optical switching with fast and slow materials. Nat. Commun. 14, 5877 (2023)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. E. Figueroa, F. Vewinger, J. Appel, A.I. Lvovsky, Decoherence of electromagnetically induced transparency in atomic vapor. Opt. Lett. 17, 2625 (2006)

    Article  ADS  Google Scholar 

  58. A. Javan, O. Kocharovskaya, H. Lee, M.O. Scully, Narrowing of electromagnetically induced transparency resonance in a Doppler-broadened medium. Phys. Rev. A 66, 013805 (2002)

    Article  ADS  Google Scholar 

  59. H. Lee, Y. Rostovtsev, C.J. Bednar, A. Javan, From laser-induced line narrowing to electro- magnetically induced transparency: closed system analysis. Appl. Phys. B 76, 33 (2003)

    Article  ADS  CAS  Google Scholar 

  60. M. Fleischhauer, A. Imamoglu, J.P. Marangos, Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633 (2005)

    Article  ADS  CAS  Google Scholar 

  61. Y.Q. Li, M. Xiao, Electromagnetically induced transparency in a three-level \(\Lambda\)-type system in rubidium atoms. Opt. Lett. 21, 1064 (1995)

    Article  ADS  Google Scholar 

  62. Y.Q. Li, M. Xiao, Observation of quantum interference between dressed states in an electromagnetically induced transparency. Phys. Rev. A Gen. Phys. 51, 4959 (1995)

    Article  ADS  CAS  Google Scholar 

  63. J.G. Banacloche, Y.Q. Li, S.Z. Jin, M. Xiao, Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment. Phys. Rev. A Gen. Phys. 51, 576 (1995)

    Article  ADS  Google Scholar 

  64. E.A. Korsunsky, N. Leinfellner, A. Huss, S. Baluschev, L. Windholz, Phase-dependent electromagnetically induced transparency. Phys. Rev. A 59, 2302 (1999)

    Article  ADS  CAS  Google Scholar 

  65. M.D. Stenner, M.A. Neifeld, Z. Zhu, A.M.C. Dawes, D.J. Gauthier, Zero-broadening and pulse compression slow light in an optical fiber at high pulse delays. Opt. Express 13, 9995 (2005)

    Article  ADS  PubMed  Google Scholar 

  66. J.B. Khurgin, Performance limits of delay lines based on optical amplifiers. Opt. Lett. 31, 948 (2006)

    Article  ADS  PubMed  Google Scholar 

  67. A. Minardo, R. Bernini, L. Zeni, Low distortion Brillouin slow light in optical fibers using AM modulation. Opt. Express 14, 5866 (2006)

    Article  ADS  PubMed  Google Scholar 

  68. R.W. Boyd, D.J. Gauthier, A.L. Gaeta, A.E. Willner, Maximum time delay achievable on propagation through a slow-light medium. Phys. Rev. A 71, 023801 (2005)

    Article  ADS  Google Scholar 

  69. M. Bashkansky, G. Beadie, Z. Dutton, F.K. Fatemi, J. Reintjes, M. Steiner, Slow-light dynamics of large-bandwidth pulses in warm rubidium vapor. Phys. Rev. A 72, 033819 (2005)

    Article  ADS  Google Scholar 

  70. H. Li, V.A. Sautenkov, Y.V. Rostovtsev, G.R. Welch, P.R. Hemmer, M.O. Scully, Electromagnetically induced transparency controlled by a microwave field. Phys. Rev. A 80, 023820 (2009)

    Article  ADS  Google Scholar 

  71. S. Baluscheva, N. Leinfellner, E.A. Korsunsky, L. Windholzb, Electromagnetically induced transparency in a Sodium vapour cell. Eur. Phys. J. D 2, 5 (1998)

    Article  ADS  Google Scholar 

  72. F. Renzoni, W. Maichen, L. Windholz, E. Arimondo, Coherent population trapping with losses observed on the Hanle effect of the D1 sodium line. Phys. Rev. A 55, 3710 (1997)

    Article  ADS  CAS  Google Scholar 

  73. G. Alzetta, S. Gozzini, A. Lucchesini, S. Cartaleva, T. Karaulanov, C. Marinelli, L. Moi, Complete electromagnetic induced transparency in sodium atoms excited by a multimode dye laser. Phys. Rev. A 69, 063815 (2004)

    Article  ADS  Google Scholar 

  74. D.A. Steck, Sodium D Line Data, http://steck.us/alkalidata

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fazal Ghafoor.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiaz, G., Subhan, W., Ghulam, N. et al. Group delayed phase switching of Gaussian light pulses via a thermal atomic medium. Eur. Phys. J. Plus 139, 192 (2024). https://doi.org/10.1140/epjp/s13360-024-04977-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-04977-8

Navigation