Skip to main content
Log in

Gaussian Pulse Distortion in a Nonlinear Induced Kerr Atomic Medium

  • Statistical
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

The Gaussian pulse propagation is investigated in an atomic medium under Kerr nonlinearity effect. The pulse intensity is reduced from \(100\%\) to \(3\%\) as the propagation distance of the medium L= 100 cm. The pulse shows large phase shift within the medium due to large delay. The large phase shift and delay have significant applications, but the pulse intensity is dropped and energy is lost with cross-Kerr nonlinearity in the medium. Time holes are investigated due to rapid distortion and phase shifts in time where the pulse intensity is vanished. The pulse is split into large and small delay and phase shifts. The modified results may have significant applications in photo cell devices, self- and cross-phase modulation and disadvantage in communication systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.D. Pelusi, H.F. Liu, IEEE J. Quantum Electron. 33, 1430 (1997)

    Article  ADS  Google Scholar 

  2. K. Iwashita, K. Nakagawa, Y. Nakano, Y. Suzuki, Electron. Lett. 18, 873 (1982)

    Article  ADS  Google Scholar 

  3. D. Anderson, M. Lisak, Opt. Lett. 11, 569 (1986)

    Article  ADS  Google Scholar 

  4. G.P. Agrawal, Fiber Optics Communication Systems (Wiley, New York, 1997)

    Google Scholar 

  5. The Physics of Quantum Information, edited by D. Bouwmeester, A. Ekert, and A. Zeilinger (Springer, New York, 2000)

  6. J. Oreg, F.T. Hioe, J.H. Eberlv, Phvs. Rev. A 67, 1855 (1991)

    Article  Google Scholar 

  7. N.V. Vitanov, T. Halfmann, B.W. Shore, K. Bergmann, Annu. Rev. Phys. Chem. 52, 763 (2001)

    Article  ADS  Google Scholar 

  8. F. Ghafoor, Lasphys. Lett. 10, 115002 (2013)

    ADS  Google Scholar 

  9. E.M. Macove, C.H. Keitel, Phys. Rev. Lett. 91, 123601 (2003)

  10. M. Fleishhauer, A. Imamoglu, J.P. Marangos, Rev. Mod. Phys. 77, 633 (2005)

    Article  ADS  Google Scholar 

  11. E. Arimondo, Prog. Opt. 35, 257 (1996)

    Article  ADS  Google Scholar 

  12. A.S. Zibrov et al., Phys. Rev. Lett. 75, 1499 (1995)

    Article  ADS  Google Scholar 

  13. G.S. Agarwal, S. Dasgupta, Phys. Rev. A 70, 023802 (2004)

    Article  ADS  Google Scholar 

  14. S. Longhi, M. Marano, P. Laporta, M. Belmonte, Phys. Rev. E 64, 055602 (2001)

    Article  ADS  Google Scholar 

  15. M.S. Bigelow, N.N. Lepeshkin, R.W. Boyd, Phys. Rev. Lett. 90, 113903 (2003)

    Article  ADS  Google Scholar 

  16. B. Macke, B. Sgard, and F, Wielonsky. Phys. Rev. E 72, 035601R (2005)

    Article  ADS  Google Scholar 

  17. A. Schweinsberg, N.N. Lepeshkin, M.S. Bigelow, R.W. Boyd, S. Jarabo, Europhys. Lett. 73, 218 (2006)

    Article  ADS  Google Scholar 

  18. H. Shin, A. Schweinsberg, G. Gehring, K. Schwertz, H.J. Chang, R.W. Boyd, Opt. Lett. 32, 906 (2007)

    Article  ADS  Google Scholar 

  19. Z. Shi, R. Pant, Z. Zhu, M.D. Stenner, RW. Boyd M.A. Neifeld, D.J. Gauthier, Opt. Lett. 32, 1986 (2007)

  20. M.D. Stenner, D.J. Gauthier, Phys. Rev. A 67, 063801 (2003)

    Article  ADS  Google Scholar 

  21. J. Diels, W. Rudolph, P. Liao, P. Kelley, Ultrashort Laser Pulse Phenomena, Ser (Elsevier Science, Optics and Photonics, 2006)

    Google Scholar 

  22. J.P. Gilb, C.A. Balanis, IEEE Trans. Microwave Theory Tech. 37, 1620–1628 (1989)

    Article  ADS  Google Scholar 

  23. H. Wang, D. Goorskey, M. Xiao, Phys. Rev. Lett. 87, 073601 (2001)

    Article  ADS  Google Scholar 

  24. H. Chang, Y. Du, J. Yao, C. Xie, H. Wang, Europhys. Lett. 65, 485 (2004)

    Article  ADS  Google Scholar 

  25. H. Kang, Y. Zhu, Phys. Rev. Lett. 91, 093601 (2003)

    Article  ADS  Google Scholar 

  26. C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, P. Tombesi, Phys. Rev. Lett. 90, 197902 (2003)

    Article  ADS  Google Scholar 

  27. C. Ottaviania, S. Rebic, D. Vitali, P. Tombesi, Eur. Phys. J. D 40, 281 (2006)

    Article  ADS  Google Scholar 

  28. G.H. Huang, K.J. Jiang, M.G. Payne, L. Deng, Phys. Rev. E 73, 056606 (2006)

    Article  ADS  Google Scholar 

  29. J.P. Poizat, P. Grangier, Phys. Rev. Lett. 70, 271 (1993)

    Article  ADS  Google Scholar 

  30. Q.A. Turchette, C.J. Hood, W. Lange, Phys. Rev. Lett. 75, 4710 (1995)

  31. H. Wang, D. Goorskey, M. Xiao, Opt. Lett. 27, 1354 (2002)

    Article  ADS  Google Scholar 

  32. U. Wahid, A. Khan, B. Bacha, A. Ullah, Optik 202, 163651 (2020)

    Article  ADS  Google Scholar 

  33. T.N. Dey, G.S. Agarwal. Phys. Rev. A 76, 015802 (2007)

    Article  ADS  Google Scholar 

  34. L. Khan, B.A. Bacha, U. Wahid, A. Ullah. Phys. Scr. 95, 075109 (2020)

    Article  ADS  Google Scholar 

  35. S. Khan, S. Muhammad, B.A. Bacha, U. Wahid, Phys. Scr. 95, 095102 (2020)

    Article  ADS  Google Scholar 

  36. F. Ullah, U. Wahid, B. Bacha, A. Ullah, Laser Phys. 30, 095203 (2020)

    Article  ADS  Google Scholar 

  37. S.M. Arif, B.A. Bacha, U. Wahid, A. Ullah, M. Haneef, Phys. Scr. 96, 035106 (2020)

    Article  ADS  Google Scholar 

  38. S.M. Arif, B.A. Bacha, U. Wahid, M. Haneef, A. Ullah, Phys. Lett. A 388, 127041 (2020)

    Article  Google Scholar 

  39. W. Ahmad, B.A. Bacha, U. Wahid, A. Ullah, M. Haneef, Eur. Phys. J. Plus 136(3), 275 (2021)

    Article  Google Scholar 

  40. S. Ullah, U. Wahid, B.A. Bacha, A. Ullah, Z. Ullah, Phys. Scr. 96, 015104 (2020)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bakht Amin Bacha.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$\begin{aligned} \overset{\cdot }{\overset{\sim }{\rho }}_{45}= & \; B_1\widetilde{\rho }_{45} +\frac{i}{2}G_2^{*}\widetilde{\rho }_{25}-\frac{i}{2}G_{1c} \widetilde{\rho }_{41}-\frac{i}{2}G_2 \widetilde{\rho }_{43}+\frac{i}{2}G_p( \widetilde{\rho }_{55}- \widetilde{\rho }_{44}) \\ \overset{\cdot }{\overset{\sim }{\rho }}_{41}= & \; B_2\widetilde{\rho }_{41} +\frac{i}{2}G_2^{*}\widetilde{\rho }_{21}-\frac{i}{2}G^*_{1c} \widetilde{\rho }_{45}+\frac{i}{2}G_p \widetilde{\rho }_{51}\\ \overset{\cdot }{\overset{\sim }{\rho }}_{43}= & \; B_3\widetilde{\rho }_{43} +\frac{i}{2}G_2^{*}\widetilde{\rho }_{23}-\frac{i}{2}G^*_{2c} \widetilde{\rho }_{45}+\frac{i}{2}G_p \widetilde{\rho }_{53}\\ \overset{\cdot }{\overset{\sim }{\rho }}_{25}= & \; B_4\widetilde{\rho }_{25}+\frac{i}{2}G_2\widetilde{\rho }_{45}-\frac{i}{2}G_{1c} \widetilde{\rho }_{21}-\frac{i}{2}G_{2c} \widetilde{\rho }_{23}-\frac{i}{2}G_{p} \widetilde{\rho }_{24}\\ \overset{\cdot }{\overset{\sim }{\rho }}_{21}= & \; B_5\widetilde{\rho }_{21} +\frac{i}{2}G_2\widetilde{\rho }_{41}-\frac{i}{2}G^*_{1c} \widetilde{\rho }_{25}\\ \overset{\cdot }{\overset{\sim }{\rho }}_{23}= & \; B_6\widetilde{\rho }_{23} +\frac{i}{2}G_2\widetilde{\rho }_{43}-\frac{i}{2}G^*_{2c} \widetilde{\rho }_{25} \end{aligned}$$

where

$$\begin{aligned} B_1= & \; (i\Delta _p-\frac{\Gamma _{54}}{2})\\ B_2= & \; (i\Delta _p-i1_c)-\frac{1}{2}(\Gamma _{51}+\Gamma _{54})\\ B_3= & \; (i\Delta _p-i2_c)-\frac{1}{2}(\Gamma _{53}+\Gamma _{54})\\ B_4= & \; i(\Delta _p+\Delta _2)\\ B_5= & \; i(\Delta _2+\Delta _p-\Delta _{1c})-\frac{1}{2}\Gamma _{51} \end{aligned}$$

and

$$\begin{aligned} B_6=i(\Delta _p+\Delta _2-\Delta _{2c})-\frac{1}{2}\Gamma _{53} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M., Rahman, A.U., Bacha, B.A. et al. Gaussian Pulse Distortion in a Nonlinear Induced Kerr Atomic Medium. Braz J Phys 51, 1265–1272 (2021). https://doi.org/10.1007/s13538-021-00919-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-021-00919-2

Keywords

Navigation