Skip to main content
Log in

Hybrid relativistic effect of the entangled fermion fields

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Unruh and Schwinger effects are the two well-known phenomena in the relativistic quantum field. Here, we study their joint action on quantum correlations (entanglement negativity and quantum mutual information). We consider an entangled two-mode fermion fields, in which one mode undergoes Unruh effect with constant acceleration and the other undergoes Schwinger effect of constant electric field. It is found that both relativistic effects degrade the quantum correlations of the initial state, which are then redistributed among the particles and antiparticles produced by the two effects. The different behaviors exhibited by the two relativistic effects and the conservation of quantum correlation in the process are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study, and it contains no experimental data.]

References

  1. S.W. Hawking, Nature (London) 248, 30 (1974)

    Article  ADS  Google Scholar 

  2. W.G. Unruh, Phys. Rev. D 14, 870 (1976)

    Article  ADS  Google Scholar 

  3. L. Bombelli, R.K. Koul, J. Lee, R. Sorkin, Phys. Rev. D 34, 373 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  4. S.W. Hawking, Commun. Math. Phys. 43, 199 (1975)

    Article  ADS  Google Scholar 

  5. H. Terashima, Phys. Rev. D 61, 104016 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  6. I. Fuentes-Schuller, R.B. Mann, Phys. Rev. Lett. 95, 120404 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  7. P.M. Alsing, I. Fuentes-Schuller, R.B. Mann, T.E. Tessier, Phys. Rev. A 74, 032326 (2006)

    Article  ADS  Google Scholar 

  8. E.G. Brown, K. Cormier, E. Martín-Martínez, R.B. Mann, Phys. Rev. A 86, 032108 (2012)

    Article  ADS  Google Scholar 

  9. J. Wang, J. Deng, J. Jing, Phys. Rev. A 81, 052120 (2010)

    Article  ADS  Google Scholar 

  10. G. Adesso, I. Fuentes-Schuller, M. Ericsson, Phys. Rev. A 76, 062112 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  11. M.R. Hwang, D. Park, E. Jung, Phys. Rev. A 83, 012111 (2011)

    Article  ADS  Google Scholar 

  12. E. Martín-Martínez, I. Fuentes, Phys. Rev. A 83, 052306 (2011)

    Article  ADS  Google Scholar 

  13. D.E. Bruschi, A. Dragan, I. Fuentes, J. Louko, Phys. Rev. D 86, 025026 (2012)

    Article  ADS  Google Scholar 

  14. Z. Tian, J. Jing, Phy. Lett. B 707, 264 (2012)

    Article  ADS  Google Scholar 

  15. S. Xu, X.K. Song, J.D. Shi, L. Ye, Phys. Rev. D 89, 065022 (2014)

    Article  ADS  Google Scholar 

  16. E. Martín-Martínez, L.J. Garay, J. León, Phys. Rev. D 82, 064006 (2010)

    Article  ADS  Google Scholar 

  17. Y. Dai, Z. Shen, Y. Shi, Phys. Rev. D 94, 025012 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  18. S.M. Wu, H.S. Zeng, H.M. Cao, Class. Quantum Grav. 38, 185007 (2021)

    Article  ADS  Google Scholar 

  19. W.-C. Qiang, G.-H. Sun, Q. Dong, S.-H. Dong, Phys. Rev. A 98, 022320 (2018)

    Article  ADS  Google Scholar 

  20. A.J. Torres-Arenasa, Q. Dong, G.H. Sun, W.C. Qiang, S.H. Dong, Phys. Lett. B 789, 93 (2019)

    Article  ADS  Google Scholar 

  21. Q. Dong, A.J. Torres-Arenas, G.-H. Sun, S.-H. Dong, Front. Phys. 15, 11602 (2020)

    Article  ADS  Google Scholar 

  22. Q. Dong, G.-H. Sun, M. Toutounji, S.-H. Dong, Optik 201, 163487 (2020)

    Article  ADS  Google Scholar 

  23. S.M. Wu, H.S. Zeng, Eur. Phys. J. C 82, 4 (2022)

    Article  ADS  Google Scholar 

  24. S.M. Wu, Y.T. Cai, W.J. Peng, H.S. Zeng, Eur. Phys. J. C 82, 412 (2022)

    Article  ADS  Google Scholar 

  25. Z. Huang, H. Situ, Quantum Inf. Process. 17, 95 (2018)

    Article  ADS  Google Scholar 

  26. Z. Huang, Quantum Inf. Process. 16, 207 (2017)

    Article  ADS  Google Scholar 

  27. Z.Y. Ding, C.C. Liu, W.Y. Sun, J. He, L. Ye, Quantum Inf. Process. 17, 279 (2018)

    Article  ADS  Google Scholar 

  28. M. Uhlmann, Y. Xu, R. Schützhold, New J. Phys. 7, 248 (2005)

    Article  ADS  Google Scholar 

  29. P. Jain, S. Weinfurtner, M. Visser, C.W. Gardiner, Phys. Rev. A 76, 033616 (2007)

    Article  ADS  Google Scholar 

  30. S.M. Wu, H.S. Zeng, T. Liu, Class. Quantum Grav. 39, 135016 (2022)

    Article  ADS  Google Scholar 

  31. G. VerSteeg, N.C. Menicucci, Phys. Rev. D 79, 044027 (2009)

    Article  ADS  Google Scholar 

  32. M. Han, S.J. Olson, J.P. Dowling, Phys. Rev. A 78, 022302 (2008)

    Article  ADS  Google Scholar 

  33. R. Müller, C.O. Lousto, Phys. Rev. D 52, 4512 (1995)

    Article  ADS  Google Scholar 

  34. J. Schwinger, Phys. Rev. 82, 664 (1951)

    Article  ADS  MathSciNet  Google Scholar 

  35. Z. Ebadi, B. Mirza, Ann. Phys. (Amsterdam) 351, 363 (2014)

    Article  ADS  Google Scholar 

  36. Y. Li, Y. Dai, Y. Shi, Phys. Rev. D 95, 036006 (2017)

    Article  ADS  Google Scholar 

  37. S.M. Wu, H.S. Zeng, Class. Quantum Grav. 37, 115003 (2020)

    Article  ADS  Google Scholar 

  38. Y. Li, Q. Mao, Y. Shi, Phys. Rev. A 99, 032340 (2019)

    Article  ADS  Google Scholar 

  39. A. Peres, Phys. Rev. Lett. 77, 1413 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  40. P. Horodečki, Phys. Lett. A 232, 333 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  41. M.A. Nielsen, I. Chuang, Quantum Computation and Quantum Information (Cambridge University, Cambridge, 2000)

    MATH  Google Scholar 

  42. L. Juan, M.M. Eduardo, Phys. Rev. A 80, 012314 (2009)

    Article  Google Scholar 

  43. B. Richter, Y. Omar, Phys. Rev. A 92, 022334 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  44. M. Blasone, G. Lambiase, G.G. Luciano, Phys. Rev. D 96, 025023 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  45. L.J. Garay, E. Martín-Martínez, J. de Ramón, Phys. Rev. D 94, 104048 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  46. T. Li, B. Zhang, L. You, Phys. Rev. D 97, 045005 (2018)

    Article  ADS  Google Scholar 

  47. S.M. Wu, H.S. Zeng, T. Liu, New J. Phys. 24, 073004 (2022)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 1217050862, 11275064).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao-Sheng Zeng.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, HS., Wu, LJ. Hybrid relativistic effect of the entangled fermion fields. Eur. Phys. J. Plus 138, 814 (2023). https://doi.org/10.1140/epjp/s13360-023-04467-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04467-3

Navigation