Skip to main content
Log in

Quantum Random Number Generator (QRNG): theoretical and experimental investigations

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Quantum Random Number Generators (QRNGs) emerged as a promising solution for generating truly random numbers. In the present article, we give an overview of QRNGs highlighting the merits and demerits of various strategies briefly. Then opting for the best-case scenario, we present the in-depth experimental explorations for building and characterizing QRNG using the homodyne detection technique to measure the quadrature amplitude of quantum vacuum fluctuations. Since entropy assessment plays a fundamental role in authenticating the true randomness, a comprehensive description of entropy and how it evaluates the quality of randomness of the source is illustrated. Our experimental setup, apart from the hardware, includes a diverse set of testing techniques including NIST statistical/entropy suites, Dieharder tests battery, and autocorrelation coefficient to verify the randomness and statistical properties of the generated random numbers. We believe that our experimental investigations provide a valuable resource for building QRNGs for a wide range of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availibility Statement

As all experimental data have been presented in the main text graphically; therefore, this manuscript has no associated data information.

References

  1. C. Bennett ,G. Brassard, Withdrawn: quantum cryptography: public key distribution and coin tossing, pp. 175–179 (1984)

  2. N. Metropolis, S. Ulam, The Monte Carlo method. J. Am. Stat. Assoc. 44, 335 (1949)

    Article  MATH  Google Scholar 

  3. B. Schneier, Applied Cryptography: Protocols, Algorithms, and Source Code in C (Wiley, 2015)

    MATH  Google Scholar 

  4. H.C. Schmidt, Quantum-mechanical random-number generator. J. Appl. Phys. 41, 462 (1970)

    Article  ADS  Google Scholar 

  5. M. Herrero-Collantes, J.C. Garcia-Escartin, Quantum random number generators. Rev. Mod. Phys. 89, 015004 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  6. X. Ma, X. Yuan, Z. Cao, B. Qi, Z. Zhang, Quantum random number generation. Npj Quantum Inform. 2, 1 (2016)

    Article  Google Scholar 

  7. M. Michler, K. Mattle, H. Weinfurter, A. Zeilinger, M. Zukowski, An experimental test of quantum randomness. Europhys. Lett. 43, 83 (1998)

    ADS  Google Scholar 

  8. J.G. Rarity, P. Owens, P. Tapster, Quantum random-number generation and key sharing. J. Mod. Opt. 41, 2435 (1994)

    Article  ADS  Google Scholar 

  9. A. Stefanov, N. Gisin, O. Guinnard, L. Guinnard, H. Zbinden, Optical quantum random number generator. J. Mod. Opt. 47, 595 (2000)

    ADS  Google Scholar 

  10. T. Jennewein, U. Achleitner, G. Weihs, H. Weinfurter, A. Zeilinger, A fast and compact quantum random number generator. Rev. Sci. Instrum. 71, 1675 (2000)

    Article  ADS  Google Scholar 

  11. H.-Q. Ma, Y. Xie, L.-A. Wu, Random number generation based on the time of arrival of single photons. Appl. Opt. 44, 7760 (2005)

    Article  ADS  Google Scholar 

  12. A. Dixon, Z. Yuan, J. Dynes, A. Sharpe, A. Shields, Gigahertz decoy quantum key distribution with 1 mbit/s secure key rate. Opt. Express 16, 18790 (2008)

    Article  ADS  Google Scholar 

  13. M.A. Wayne, P.G. Kwiat, Low-bias high-speed quantum random number generator via shaped optical pulses. Opt. Express 18, 9351 (2010)

    Article  ADS  Google Scholar 

  14. H. Fürst, H. Weier, S. Nauerth, D.G. Marangon, C. Kurtsiefer, H. Weinfurter, High speed optical quantum random number generation. Opt. Express 18, 13029 (2010)

    Article  ADS  Google Scholar 

  15. B. Qi, Y.-M. Chi, H.-K. Lo, L. Qian, High-speed quantum random number generation by measuring phase noise of a single-mode laser. Opt. Lett. 35, 312 (2010)

    Article  ADS  Google Scholar 

  16. C. Gabriel, C. Wittmann, D. Sych, R. Dong, W. Mauerer, U.L. Andersen, C. Marquardt, G. Leuchs, A generator for unique quantum random numbers based on vacuum states. Nat. Photon. 4, 711 (2010)

    Article  ADS  Google Scholar 

  17. X.-G. Zhang, Y.-Q. Nie, H. Zhou, H. Liang, X. Ma, J. Zhang, J.-W. Pan, Fully integrated 3.2 gbps quantum random number generator with real-time extraction. Rev. Sci. Instrum. 87, 076102 (2016)

    Article  ADS  Google Scholar 

  18. M. Jofre, M. Curty, F. Steinlechner, G. Anzolin, J. Torres, M. Mitchell, V. Pruneri, True random numbers from amplified quantum vacuum. Opt. Express 19, 20665 (2011)

    Article  ADS  Google Scholar 

  19. P.J. Bustard, D. Moffatt, R. Lausten, G. Wu, I.A. Walmsley, B.J. Sussman, Quantum random bit generation using stimulated raman scattering. Opt. Express 19, 25173 (2011)

    Article  ADS  Google Scholar 

  20. Y. Jian, M. Ren, E. Wu, G. Wu, H. Zeng, Two-bit quantum random number generator based on photon-number-resolving detection. Rev. Sci. Instrum. 82, 073109 (2011)

    Article  ADS  Google Scholar 

  21. A. Marandi, N.C. Leindecker, K.L. Vodopyanov, R.L. Byer, All-optical quantum random bit generation from intrinsically binary phase of parametric oscillators. Opt. Express 20, 19322 (2012)

    Article  ADS  Google Scholar 

  22. F. Xu, B. Qi, X. Ma, H. Xu, H. Zheng, H.-K. Lo, Ultrafast quantum random number generation based on quantum phase fluctuations. Opt. Express 20, 12366 (2012)

    Article  ADS  Google Scholar 

  23. Y.-Q. Nie, H.-F. Zhang, Z. Zhang, J. Wang, X. Ma, J. Zhang, J.-W. Pan, Practical and fast quantum random number generation based on photon arrival time relative to external reference. Appl. Phys. Lett. 104, 051110 (2014)

    Article  ADS  Google Scholar 

  24. Q. Yan, B. Zhao, Q. Liao, N. Zhou, Multi-bit quantum random number generation by measuring positions of arrival photons. Rev. Sci. Instrum. 85, 103116 (2014)

    Article  ADS  Google Scholar 

  25. Y.-Q. Nie, L. Huang, Y. Liu, F. Payne, J. Zhang, J.-W. Pan, The generation of 68 gbps quantum random number by measuring laser phase fluctuations. Rev. Sci. Instrum. 86, 063105 (2015)

    Article  ADS  Google Scholar 

  26. S. Pironio, A. Acín, S. Massar, A.B. de La Giroday, D.N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T.A. Manning et al., Random numbers certified by bell’s theorem. Nature 464, 1021 (2010)

    Article  ADS  Google Scholar 

  27. T. Lunghi, J.B. Brask, C.C.W. Lim, Q. Lavigne, J. Bowles, A. Martin, H. Zbinden, N. Brunner, Self-testing quantum random number generator. Phys. Rev. Lett. 114, 150501 (2015)

    Article  ADS  Google Scholar 

  28. H. Guo, W. Tang, Y. Liu, W. Wei, Truly random number generation based on measurement of phase noise of a laser. Phys. Rev. E 81, 051137 (2010)

    Article  ADS  Google Scholar 

  29. C. Abellán, W. Amaya, D. Mitrani, V. Pruneri, M.W. Mitchell, Generation of fresh and pure random numbers for loophole-free bell tests. Phys. Rev. Lett. 115, 250403 (2015)

    Article  ADS  Google Scholar 

  30. C. Abellán, W. Amaya, M. Jofre, M. Curty, A. Acín, J. Capmany, V. Pruneri, M. Mitchell, Ultra-fast quantum randomness generation by accelerated phase diffusion in a pulsed laser diode. Opt. Express 22, 1645 (2014)

    Article  ADS  Google Scholar 

  31. Z. Yuan, M. Lucamarini, J. Dynes, B. Fröhlich, A. Plews, A. Shields, Robust random number generation using steady-state emission of gain-switched laser diodes. Appl. Phys. Lett. 104, 261112 (2014)

    Article  ADS  Google Scholar 

  32. W. Wei, H. Guo, Bias-free true random-number generator. Opt. Lett. 34, 1876 (2009)

    Article  ADS  Google Scholar 

  33. M. Ren, E. Wu, Y. Liang, Y. Jian, G. Wu, H. Zeng, Quantum random-number generator based on a photon-number-resolving detector. Phys. Rev. A 83, 023820 (2011)

    Article  ADS  Google Scholar 

  34. M. Applegate, O. Thomas, J. Dynes, Z. Yuan, D. Ritchie, A. Shields, Efficient and robust quantum random number generation by photon number detection. Appl. Phys. Lett. 107, 071106 (2015)

    Article  ADS  Google Scholar 

  35. W. Liu, Z. Yin, X. Chen, Z. Peng, H. Song, P. Liu, X. Tong, Y. Zhang et al., A secret key distribution technique based on semiconductor superlattice chaos devices. Sci. Bull 63, 1034 (2018)

    Article  Google Scholar 

  36. P. Wang, G. Long, Y. Li, Scheme for a quantum random number generator (2006)

  37. H. Zhou, J. Li, D. Pan, W. Zhang, G. Long, Quantum random number generator based on quantum tunneling effect, arXiv preprint arXiv:1711.01752 (2017)

  38. A. Dandasi, H. Ozel, O. Hasekioglu, K. Durak, Optical post processing for high speed quantum random number generators, arXiv preprint arXiv:1909.04909 (2019)

  39. Z. Haider, S. Qamar, M. Irfan, Multiphoton blockade and antibunching in an optical cavity coupled with dipole-dipole-interacting \(\lambda\)-type atoms. Phys. Rev. A 107, 043702 (2023)

    Article  ADS  Google Scholar 

  40. M. H. Saeed, H. Sattar, M. H. Durad, Z. Haider, Implementation of qkd bb84 protocol in qiskit, in 2022 19th International Bhurban Conference on Applied Sciences and Technology (IBCAST) (Organization IEEE, 2022) pp. 689–695

  41. J. Bouda, M. Pivoluska, M. Plesch, C. Wilmott, Weak randomness seriously limits the security of quantum key distribution. Phys. Rev. A 86, 062308 (2012)

    Article  ADS  Google Scholar 

  42. W.-B. Liu, Y.-S. Lu, Y. Fu, S.-C. Huang, Z.-J. Yin, K. Jiang, H.-L. Yin, Z.-B. Chen, Source-independent quantum random number generator against tailored detector blinding attacks. Opt. Express 31, 11292 (2023)

    Article  ADS  Google Scholar 

  43. Y.-M. Xie, Y.-S. Lu, C.-X. Weng, X.-Y. Cao, Z.-Y. Jia, Y. Bao, Y. Wang, Y. Fu, H.-L. Yin, Z.-B. Chen, Breaking the rate-loss bound of quantum key distribution with asynchronous two-photon interference. PRX Quantum 3, 020315 (2022)

    Article  ADS  Google Scholar 

  44. M. Lucamarini, Z.L. Yuan, J.F. Dynes, A.J. Shields, Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature 557, 400 (2018)

    Article  ADS  Google Scholar 

  45. J. Gu, X.-Y. Cao, Y. Fu, Z.-W. He, Z.-J. Yin, H.-L. Yin, Z.-B. Chen, Experimental measurement-device-independent type quantum key distribution with flawed and correlated sources. Sci. Bull. 67, 2167 (2022)

    Article  Google Scholar 

  46. J.-P. Chen, C. Zhang, Y. Liu, C. Jiang, W.-J. Zhang, Z.-Y. Han, S.-Z. Ma, X.-L. Hu, Y.-H. Li, H. Liu et al., Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nat. Photon. 15, 570 (2021)

    Article  ADS  Google Scholar 

  47. C.-Y. Chan, M. Tanaka, Y.-T. Lee, Y.-W. Wong, H. Nakanotani, T. Hatakeyama, C. Adachi, Stable pure-blue hyperfluorescence organic light-emitting diodes with high-efficiency and narrow emission. Nat. Photon. 15, 203 (2021)

    Article  ADS  Google Scholar 

  48. H.-L. Yin, Y. Fu, C.-L. Li, C.-X. Weng, B.-H. Li, J. Gu, Y.-S. Lu, S. Huang, Z.-B. Chen, Experimental quantum secure network with digital signatures and encryption. Natl. Sci. Rev. 10, nwac228 (2023)

    Article  ADS  Google Scholar 

  49. F. Galton, Dice for statistical experiments. Nature (London) 42, 13 (1890)

    Article  ADS  MATH  Google Scholar 

  50. J. Von Neumann, Various techniques used in connection with random digits. Appl. Math. Ser. 12, 3 (1951)

    Google Scholar 

  51. S. Ghosh, B. Ray, D. Ghosh, R. Singhal, K.R. Choo, Randomness in testing and evaluation of machine learning systems: a review. IEEE Access 9, 146238 (2021)

    Google Scholar 

  52. A. Melnikov, H.M. Wiseman, A. Fedrizzi, Benchmarking quantum random number generators with a bell test. Phys. Rev. Res. 3, 013163 (2021)

    Google Scholar 

  53. S. Pironio, D. Cavalcanti, D. Rosset, M. Scarani, Loophole-free bell-fisher inequality violation using electron spins in diamond. Nat. Commun. 12, 3817 (2021)

    Google Scholar 

  54. M. Iqbal, A. Mahmood, I. Baig, W. Mehmood, Secure lottery protocol using blockchain and secret sharing with dynamic randomness generation. IEEE Trans. Depend. Sec. Comput. 18, 1 (2021)

    Google Scholar 

  55. R. Salloum, M. Hanzel, M. Hostettler, M.R. Kagan, J.R. Kermiche, A.H. Le, V. Lefebvre, T.W. Madlener, E. Naryshkin, J.C. Wang, J.C. Zhang, J.F. Genat, C. Claessens, J. Marshall, R.A. Fernandes, Random number processors for Monte Carlo simulations in high energy physics. IEEE Trans. Nucl. Sci. 68, 960 (2021)

    Google Scholar 

  56. B. Schneier, Applied Cryptography: Protocols, Algorithms, and Source Code in C (Wiley, 2007)

    MATH  Google Scholar 

  57. W. Trappe, Introduction to Cryptography with Coding Theory (Pearson Education India, 2006)

    MATH  Google Scholar 

  58. D.E. Knuth, The art of computer programming, volume 4A: combinatorial algorithms, part 1 (Publisher Pearson Education, India, 2011)

    MATH  Google Scholar 

  59. M. Matsumoto, T. Nishimura, Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul. (TOMACS) 8, 3 (1998)

    Article  MATH  Google Scholar 

  60. L. Blum, M. Blum, M. Shub, Comparison of two pseudo-random number generators, in Advances in Cryptology: Proceedings of Crypto 82 (Organization Springer, 1983) pp. 61–78

  61. V. Gaurav, S.A. Angadi, S.U. Padaki, An analysis of physical random number generators. Int. J. Comput. Sci. Mobile Comput. 10, 52 (2021)

    Google Scholar 

  62. K. Bai, H. Wang, X. Guan, L. Zhou, J. Zhou, B. Mao, Lava lamp randomness: a large-scale empirical study, in Proceedings of the 2021 USENIX Security Symposium (2021) pp. 1029–1044

  63. Y. Luo, D. Ding, C. Wu, H. Zhang, S. Yu, H. Guo, Quantum nonlocality with atmospheric turbulence. Phys. Rev. Lett. 127, 110401 (2021)

    Google Scholar 

  64. P. Kumar, M.N. Allam, Quantum random number generators: a review. IEEE Access 7, 59368 (2019)

    Google Scholar 

  65. F. Bao, Y. Huang, W. Liu, Y. Zhou, W. Zhang, D. Huang, Q. Zhang, Vulnerability of quantum random number generators based on photon number splitting attack. Appl. Phys. Lett. 119, 180503 (2021)

    Google Scholar 

  66. Y. Huang, W. Liu, F. Bao, D. Huang, Y. Zhou, Q. Zhang, A fully integrated high-speed quantum random number generator. Sci. Rep. 9, 1 (2019)

    Google Scholar 

  67. Y. Li, X. Chen, H. Zeng, Y. Wang, L. Liu, H. Zhang, W. Zhao, Q. Wen, X. Zhou, S. Chen, Quantum random number generation based on the spatial distribution of photons. Quantum Sci. Technol. 6, 025011 (2021)

    Google Scholar 

  68. D.G. Marangon, G. Vallone, P. Villoresi, Practical challenge to the security of quantum random number generators. Phys. Rev. Appl. 8, 024026 (2017)

    Google Scholar 

  69. M. Stipčević, B.M. Rogina, Quantum random number generator based on photonic emission in semiconductors. Rev. Sci. Instrum. 78 (2007)

  70. Y. Liu, Q. Zhao, M.-H. Li, J.-Y. Guan, Y. Zhang, B. Bai, W. Zhang, W.-Z. Liu, C. Wu, X. Yuan et al., Device-independent quantum random-number generation. Nature 562, 548 (2018)

    Article  ADS  Google Scholar 

  71. Y. Liu, X. Yuan, M.-H. Li, W. Zhang, Q. Zhao, J. Zhong, Y. Cao, Y.-H. Li, L.-K. Chen, H. Li et al., High-speed device-independent quantum random number generation without a detection loophole. Phys. Rev. Lett. 120, 010503 (2018)

    Article  ADS  Google Scholar 

  72. A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, V. Scarani, Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007)

    Article  ADS  Google Scholar 

  73. I. Marcikic, A. Lamas-Linares, C. Kurtsiefer, Free-space quantum key distribution with entangled photons. Appl. Phys. Lett. 89 (2006)

  74. W. Lei, Z. Xie, Y. Li, J. Fang, W. Shen, An 8.4 gbps real-time quantum random number generator based on quantum phase fluctuation. Quantum Inform. Process. 19, 1 (2020)

    Article  Google Scholar 

  75. M. Huang, Z. Chen, Y. Zhang, H. Guo, A phase fluctuation based practical quantum random number generator scheme with delay-free structure. Appl. Sci. (2020). https://doi.org/10.3390/app10072431

    Article  Google Scholar 

  76. Y. Tian, J. Chen, Q. Wang, Z.-B. Chen, Y. Huang, H.-W. Guo, C.-Z. Peng, Calibration-free quantum random number generation based on phase fluctuations in a single-mode laser. Opt. Lett. 43, 3566 (2018)

    Google Scholar 

  77. A. Ben-Naim, Entropy Demystified: The Second Law Reduced To Plain Common Sense (Revised Edition) (Publisher World Scientific, 2008)

  78. A. Ben-Naim, A Farewell to Entropy: Statistical Thermodynamics Based on Information: S (World Scientific, 2008)

    Book  MATH  Google Scholar 

  79. X. Zhang, F. Zhou, Y. Wu, X. Wu, Y. Liu, H. Deng, Z. Lu, Y. Zhang, Quantum random number generation based on balanced homodyne detection of field quadrature. Opt. Lett. 46, 3386 (2021)

    Google Scholar 

  80. C. Gerry, P. Knight, P.L. Knight, Introductory Quantum Optics (Cambridge University Press, 2005)

    Google Scholar 

  81. Z. Zheng, Y. Zhang, W. Huang, S. Yu, H. Guo, 6 gbps real-time optical quantum random number generator based on vacuum fluctuation. Rev. Sci. Instrum. 90 (2019)

  82. X. Guo, R. Liu, P. Li, C. Cheng, M. Wu, Y. Guo, Enhancing extractable quantum entropy in vacuum-based quantum random number generator. Entropy 20, 819 (2018)

    Article  ADS  Google Scholar 

  83. National Institute of Standards and Technology, NIST SP 800-90B: Recommendation for the Entropy Sources Used for Random Bit Generation (2018), available online: https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90B.pdf

  84. E.S. Chow, S. Khan, S. Garg, Characterizing randomness quality of virtualized servers, in Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security (2019) pp. 299–313

  85. O.E. Bouazzati, A. Tchana, W. Joosen, B. Preneel, Improving randomness for virtual machines, in 2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE) (2020) pp. 1237–1248

  86. F. Borrelli, F. Garzia, L. Perretta, M. Signorini, F. Martinelli, Enhancing randomness of software-based sources with external triggers. Comput. Secur. 105, 102322 (2021)

    Google Scholar 

  87. J. Hilbig, R. Eikenberg, D. Lohmann, Improving randomness of kernel entropy sources on linux, in 2019 IEEE Symposium on Security and Privacy (SP) ( 2019) pp. 744–760 č

  88. M. Stipčević, M. Runjic, C. Graziani, I. Buhan, M. Rossi, Compression-based analysis and generation of randomness. Entropy 15, 3655 (2013)

    Google Scholar 

  89. X. Wang, J. Zhang, Y. Yang, X. Wang, W. Zhang, J. Chen, H. Song, Verification of quantum random number generator based on shot noise. Chin. Phys. Lett. 33, 010301 (2016)

    Google Scholar 

  90. National Institute of Standards and Technology, A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications, Special Publication 800-22 (National Institute of Standards and Technology, 2010)

  91. R.G. Brown, D. Eddelbuettel, D. Bauer, Dieharder (Duke University Physics Department Durham, 2018), p.27708

    Google Scholar 

  92. Y. Shi, B. Chng, C. Kurtsiefer, Random numbers from vacuum fluctuations. Appl. Phys. Lett. 109, 041101 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeshan Haider.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haider, Z., Saeed, M.H., Zaheer, M.EuH. et al. Quantum Random Number Generator (QRNG): theoretical and experimental investigations. Eur. Phys. J. Plus 138, 797 (2023). https://doi.org/10.1140/epjp/s13360-023-04421-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04421-3

Navigation