Skip to main content
Log in

Coupled thermo-mechanical behavior of skin tissue irradiated by a pulse laser

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The thermo-mechanical behavior within biological tissues irradiated by a pulse laser is studied in this paper. The governing equations involving the local heat non-equilibrium effect and thermo-mechanical coupled effect are proposed in the context of generalized thermo-elastic model with dual-phase-lag times. An effective procedure constructed on the finite difference method is then employed to solve these equations numerically. The values of phase-lag times rooted in the local heat non-equilibrium are estimated, and the interaction between the temperature and thermal deformation is also evaluated via an effective characteristic parameter. The thermo-mechanical response irradiated by a pulse laser as a therapeutic heat source has been predicted on this basis. The parametric study of the characteristic parameters including the effective phase-lag times and thermo-mechanical coupling factor on the temperature, displacement and stresses of the target tissue is further studied. The results state that the transport properties predicted by introduction of phase-lag times and their effect on tissue temperature, displacement and normal stresses are dominated by their ratio. Furthermore, the coupled effect between the temperature and thermal deformation can be evaluated by the thermo-mechanical coupled coefficient and can be ignored in the treatments on tissues with a small thermo-mechanical coefficient in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig.2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

No data associated in the manuscript.

References

  1. A. Andreozzi, L. Brunese, M. Iasiello, C. Tucci, G.P. Vanoli, Numerical analysis of the pulsing heat source effects in a tumor tissue. Comput. Methods Programs Biol. 200, 105887 (2021). https://doi.org/10.1016/j.cmpb.2020.105887

    Article  Google Scholar 

  2. P. Keangin, P. Rattanadecho, A numerical investigation of microwave ablation on porous liver tissue. Adv. Mech. Eng. 10, 1–13 (2018). https://doi.org/10.1177/1687814017734133

    Article  Google Scholar 

  3. H. Hu, J. Wang, Z. Wu, Y. Liu, Y. Ma, J. Zhao, No benefit of wearing compression stocking after endovenous thermal ablation of varicose veins: a systematic review and meta-analysis. Eur. J. Vasc. Endovasc. 63, 103–111 (2022). https://doi.org/10.1016/j.ejvs.2021.09.034

    Article  Google Scholar 

  4. A. Andreozzi, M. Iasiello, P.A. Netti, A thermoporoelastic model for fluid transport in tumor tissues. J. R. Soc. Interface 16, 20190030 (2019). https://doi.org/10.1098/rsif.2019.0030

    Article  Google Scholar 

  5. A. Andreozzi, M. Iasiello, P.A. Netti, Effect of pulsating heat source on interstitial fluid transport in tumour tissues. J. R. Soc. Interface 17, 20200612 (2020). https://doi.org/10.1098/rsif.2020.0612

    Article  Google Scholar 

  6. S. Singh, R. Melnik, Domain heterogeneity in radiofrequency therapies for pain relief: a computational study with coupled models. Bioengineering 7, 35 (2020). https://doi.org/10.3390/bioengineering7020035

    Article  Google Scholar 

  7. N.A. Martin, S. Falder, A review of the evidence for threshold of burn injury. Burns 43, 1624–1639 (2017). https://doi.org/10.1016/j.burns.2017.04.003

    Article  Google Scholar 

  8. A. Andreozzi, L. Brunese, M. Iasiello, C. Tucci, G.P. Vanoli, Modeling heat transfer in tumors: a review of thermal therapies. Ann. Biomed. Eng. 47, 676–693 (2019). https://doi.org/10.1007/s10439-018-02177-x

    Article  Google Scholar 

  9. F. Xu, K.A. Seffen, T.J. Lu, Non-Fourier analysis of skin biothermomechanics. Int. J. Heat Mass Transf. 51, 2237–2259 (2008). https://doi.org/10.1016/j.ijheatmasstransfer.2007.10.024

    Article  MATH  Google Scholar 

  10. J.H. Zhou, J.K. Chen, Y. Zhang, Theoretical analysis of thermal damage in biological tissues caused by laser irradiation. Mol. Cell Biomech. 4, 27–39 (2007)

    MATH  Google Scholar 

  11. K.C. Liu, Analysis for high-order effects in thermal lagging to thermal responses in biological tissue. Int. J. Heat Mass Transf. 81, 347–354 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2014.10.035

    Article  Google Scholar 

  12. H.H. Pennes, Analysis of tissue and arterial blood temperature in the resting forearm. J. Appl. Physiol. 1, 93–22 (1948). https://doi.org/10.1152/jappl.1948.85.1.5

    Article  ADS  Google Scholar 

  13. A. Bhowmik, R. Singh, R. Repaka, S.C. Mishra, Conventional and newly developed bioheat transport models in vascularized tissues: a review. J. Therm. Biol. 38, 107–125 (2013). https://doi.org/10.1016/j.jtherbio.2012.12.003

    Article  Google Scholar 

  14. A. Andreozzi, M. Iasiello, C. Tucci, An overview of mathematical models and modulated-heating protocols for thermal ablation. Adv. Heat Transf. 52, 489–541 (2020). https://doi.org/10.1016/bs.aiht.2020.07.003

    Article  Google Scholar 

  15. J. Liu, X. Chen, L.X. Xu, New thermal wave aspects on burn evaluation of skin subjected to instantaneous heating. IEEE Trans. Biomed. Eng. 46, 420–428 (1999). https://doi.org/10.1109/10.752939

    Article  Google Scholar 

  16. H. Askarizadeh, H. Ahmadikia, Analytical analysis of the dual-phase-lag model of bio-heat transfer equation during transient heating of skin tissue. Heat Mass Transf. 50, 1673–1684 (2014). https://doi.org/10.1007/s00231-014-1373-6

    Article  ADS  Google Scholar 

  17. Y.M. Xuan, W. Roetzel, Bioheat equation of the human thermal system. Chem. Eng. Technol. 20, 268–276 (1997). https://doi.org/10.1002/ceat.270200407

    Article  Google Scholar 

  18. A. Nakayama, F. Kuwahara, A generalized bioheat transfer model based on the theory of porous media. Int. J. Heat Mass Transf. 51, 3190–3199 (2008). https://doi.org/10.1016/j.ijheatmasstransfer.2007.05.030

    Article  MATH  Google Scholar 

  19. Y.W. Zhang, Generalized dual-phase lag bioheat equations based on nonequilibrium heat transfer in living biological tissues. Int. J. Heat Mass Transf. 52, 4829–4834 (2009). https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.007

    Article  MATH  Google Scholar 

  20. Y.X. Li, Y. Li, P.F. Luo, X.G. Tian, Relationship between the nonlocal effect and lagging behavior in bioheat transfer. ASME J. Heat Transf. 143, 051201–051208 (2021). https://doi.org/10.11151/1.4049997

    Article  Google Scholar 

  21. M.J. Li, Y.Z. Wang, D. Liu, Generalized bio-heat transfer model combining with the relaxation mechanism and nonequilibrium heat transfer. ASME J. Heat Transf. 144, 031209–031218 (2022). https://doi.org/10.1115/1.4053414

    Article  Google Scholar 

  22. S.M. Lin, C.Y. Li, Analytical solutions of non-Fourier bio-heat conductions for skin subjected to pulsed laser heating. Int. J. Therm. Sci. 110, 146–58 (2016). https://doi.org/10.1016/j.ijthermalsci.2016.06.034

    Article  Google Scholar 

  23. K.C. Liu, Y. Wang, Y. Chen, Investigation on the bio-heat transfer with the dual-phase-lag effect. Int. J. Therm. Sci. 58, 29–35 (2012). https://doi.org/10.1016/j.ijthermalsci.2012.02.026

    Article  Google Scholar 

  24. J. Dutta, B. Kundu, Thermal wave propagation in blood perfused tissues under hyperthermia treatment for unique oscillatory heat flux at skin surface and appropriate initial condition. Heat Mass Transf. 54, 3199–3217 (2018). https://doi.org/10.1007/s00231-018-2360-0

    Article  ADS  Google Scholar 

  25. N. Afrin, J.H. Zhou, Y.W. Zhang, D.Y. Tzou, J.K. Chen, Numerical simulation of thermal damage to living biological tissues induced by laser irradiation based on a generalized dual phase lag model. Numer. Heat Transf. A-Appl. 61, 483–501 (2012). https://doi.org/10.1080/10407782.2012.667648

    Article  ADS  Google Scholar 

  26. K.C. Liu, Y.S. Chen, Analysis of heat transfer and burn damage in a laser irradiated living tissue with the generalized dual-phase-lag model. Int. J. Therm. Sci. 103, 1–9 (2016). https://doi.org/10.1016/j.ijthermalsci.2015.12.005

    Article  ADS  Google Scholar 

  27. Y.F. Yin, M. Li, Y.H. Li, J.Z. Song, Skin pain sensation of epidermal electronic device/skin system considering non-Fourier heat conduction. J. Mech. Phys. Solids 138, 103927–104022 (2020). https://doi.org/10.1016/j.jmps.2020.103927

    Article  MathSciNet  Google Scholar 

  28. F. Xu, T.J. Lu, K.A. Seffen, Biothermomechanics of skin tissues. J. Mech. Phys. Solids 56, 1852–1884 (2008). https://doi.org/10.1016/j.jmps.2007.11.011

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. X. Li, Y. Zhong, R. Jazar, A. Subic, Thermal-mechanical deformation modelling of soft tissues for thermal ablation. Bio-Med. Mater. Eng. 24, 2299–2310 (2014). https://doi.org/10.3233/BME-141043

    Article  Google Scholar 

  30. J.X. Ma, X.F. Yang, Y.X. Sun, J.L. Yang, Theoretical investigation on the thermos-mechanical responses of the human skin during thermal therapy. Int. J. Mech. Sci. 161–162, 105041–105111 (2019). https://doi.org/10.1016/j.ijmecsci.2019.105041

    Article  Google Scholar 

  31. Q. Zhang, Y.X. Sun, J.L. Yang, Thermoelastic behavior of skin tissue induced by laser irradiation based on the generalized dual-phase lag model. J. Therm. Biol. 100, 103038–103112 (2021). https://doi.org/10.1016/j.jtherbio.2021.103038

    Article  Google Scholar 

  32. X.Y. Li, C.L. Li, Z.N. Xue, X.G. Tian, Analytical study of transient thermos-mechanical responses of dual-layer skin tissue with variable thermal material properties. Int. J. Therm. Sci. 124, 459–466 (2018). https://doi.org/10.1016/j.ijthermalsci.2017.11.022

    Article  Google Scholar 

  33. X.Y. Li, Z.N. Xue, X.G. Tian, A modified fractional order generalized bio-thermoelastic theory with temperature-dependent thermal material properties. Int. J. Therm. Sci. 132, 249–256 (2018). https://doi.org/10.1016/j.ijthermalsci.2018.06.007

    Article  ADS  Google Scholar 

  34. X.Y. Li, C.L. Li, Z.N. Xue, X.G. Tian, Investigation of transient thermos-mechanical responses on the triple-layered skin tissue with temperature dependent blood perfusion rate. Int. J. Therm. Sci. 139, 339–349 (2019). https://doi.org/10.1016/j.ijthermalsci.2019.02.022

    Article  Google Scholar 

  35. Y.Z. Wang, M.J. Li, D. Liu, Thermo-mechanical interaction on transient heating of skin tissue with variable thermal material properties. Eur. J. Mech. A-Solid 86, 104173–104211 (2021). https://doi.org/10.1016/j.euromechsol.2020.104173

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. C.M. Gardner, S.L. Jacques, A.J. Welch, Light transport in tissue: accurate, heuristic for one-dimensional fluence rate and escape function based on upon Monte Carlo simulations. Laser Surg. Med. 18, 129–38 (1996). https://doi.org/10.1002/(SICI)1096-9101(1996)

    Article  Google Scholar 

  37. D.Y. Tzou, K.S. Chiu, Temperature-dependent thermal lagging in ultrafast laser heating. Int. J. Heat Mass Transf. 44, 1725–1734 (2001). https://doi.org/10.1016/S0017-9310(00)00215-5

    Article  MATH  Google Scholar 

  38. T.T. Lam, A unified solution of several heat conduction models. Int. J. Heat Mass Transf. 56, 653–666 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2012.08.055

    Article  Google Scholar 

  39. K. Mitra, S. Kumar, A. Vedavarz, M.K. Moallemi, Experimental evidence of hyperbolic heat conduction in processed meat. ASME J. Heat Transf. 117, 568–573 (1995). https://doi.org/10.1115/1.2822615

    Article  Google Scholar 

  40. D.Y. Tzou, The generalized lagging response in small-scale and high-rate heating. Int. J. Heat Mass Transf. 38, 3231–3240 (1995). https://doi.org/10.1016/S0017-9310(95)00052-6

    Article  Google Scholar 

  41. P. Vadasz, Lack of oscillations in dual-phase-lagging heat conduction for a porous slab subject to imposed heat flux and temperature. Int. J. Heat Mass Transf. 48, 2822–2828 (2005). https://doi.org/10.1016/j.ijheatmasstransfer.2005.02.005

    Article  MATH  Google Scholar 

  42. P. Yuan, Numerical analysis of an equivalent heat transfer coefficient in a porous model for simulating a biological tissue in a hyperthermia therapy. Int. J. Heat Mass Transf. 52, 1734–1740 (2009). https://doi.org/10.1016/j.ijheatmasstransfer.2008.09.033

    Article  MATH  Google Scholar 

  43. K.C. Liu, H.T. Chen, Investigation for the dual phase lag behavior of bio-heat transfer. Int. J. Therm. Sci. 49, 1138–1146 (2010). https://doi.org/10.1016/j.ijthermalsci.2010.02.007

    Article  Google Scholar 

  44. F. Xu, T.J. Lu, K.A. Seffen, Biothermomechanical behavior of skin tissue. Acta Mech. Sin. 24, 1–13 (2008). https://doi.org/10.1007/s10409-007-0128-8

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China [Grant Numbers 51676086 and 51575247].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Z. Wang.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y.Z., Lu, X.Y., Zheng, W.B. et al. Coupled thermo-mechanical behavior of skin tissue irradiated by a pulse laser. Eur. Phys. J. Plus 138, 698 (2023). https://doi.org/10.1140/epjp/s13360-023-04318-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04318-1

Navigation