Skip to main content
Log in

Thermal field and tissue damage analysis of moving laser in cancer thermal therapy

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

In this paper, a closed-form analytical solution of hyperbolic Pennes bioheat equation is obtained for spatial evolution of temperature distributions during moving laser thermotherapy of the skin and kidney tissues. The three-dimensional cubic homogeneous perfused biological tissue is adopted as a media and the Gaussian distributed function in surface and exponentially distributed in depth is used for modeling of laser moving heat source. The solution procedure is Eigen value method which leads to a closed form solution. The effect of moving velocity, perfusion rate, laser intensity, absorption and scattering coefficients, and thermal relaxation time on temperature profiles and tissue thermal damage are investigated. Results are illustrated that the moving velocity and the perfusion rate of the tissues are the main important parameters in produced temperatures under moving heat source. The higher perfusion rate of kidney compared with skin may lead to lower induced temperature amplitude in moving path of laser due to the convective role of the perfusion term. Furthermore, the analytical solution can be a powerful tool for analysis and optimization of practical treatment in the clinical setting and laser procedure therapeutic applications and can be used for verification of other numerical heating models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

n :

Fourier counter

q :

Heat flux vector

t :

Time (s)

x :

Cartesian coordinate (m)

y :

Cartesian coordinate (m)

z :

Cartesian coordinate (m)

v :

Constant velocity (ms−1)

l :

Dimension of biological tissue (m)

Q :

Heat source function

P :

Constant power

P r :

Reference power

T :

Temperature (°C)

T b :

Blood temperature (°C)

C t :

Tissue specific heat (JKg−1 ° C−1)

C b :

Blood specific heat (JKg−1 ° C−1)

T m :

Reference temperatures (°C)

h :

Dimensionless convection coefficient

X :

Dimensionless coordinate

Y :

Dimensionless coordinate

Z :

Dimensionless coordinate

w :

Propagation speed (ms−1)

α :

Thermal diffusivity (m2s−1)

μ :

Absorption depth coefficient(m−1)

ρ t :

Tissue density (Kgm−3)

ρ b :

Blood density (Kgm−3)

ϖ b :

Blood perfusion rate (s−1)

κ :

Thermal conductivity (Wm−1 ° C−1)

τ q :

Thermal relaxation time(s)

σ :

Spot radius(m)

τ :

Dimensionless time

θ :

Dimensionless temperature

References

  1. Singh, S., Repaka, R., & Al-Jumaily, A. (2019). Sensitivity analysis of critical parameters affecting the efficacy of microwave ablation using Taguchi method. International Journal of RF and Microwave Computer-Aided Engineering, 29(4), e21581

  2. Patel JM, Evrensel CA, Fuchs A, Sutrisno J (2015) Laser irradiation of ferrous particles for hyperthermia as cancer therapy, a theoretical study. Lasers Med Sci 30(1):165–172

    Article  PubMed  Google Scholar 

  3. Singh R, Das K, Okajima J, Maruyama S, Mishra SC (2015) Modeling skin cooling using optical windows and cryogens during laser induced hyperthermia in a multilayer vascularized tissue. Appl Therm Eng 89:28–35

    Article  CAS  Google Scholar 

  4. Wang Z, Zhao G, Wang T, Yu Q, Su M, He X (2015) Three-dimensional numerical simulation of the effects of fractal vascular trees on tissue temperature and intracelluar ice formation during combined cancer therapy of cryosurgery and hyperthermia. Appl Therm Eng 90:296–304

    Article  CAS  Google Scholar 

  5. Xia Y, Liu B, Ye P, Xu B (2018) Thermal field and tissue damage analysis of cryoballoon ablation for atrial fibrillation. Appl Therm Eng 142:524–529

    Article  Google Scholar 

  6. Deng ZS, Liu J (2000) Parametric studies on the phase shift method to measure the blood perfusion of biological bodies. Med Eng Phys 22(10):693–702

    Article  CAS  PubMed  Google Scholar 

  7. Liu J, Xu LX (1999) Estimation of blood perfusion using phase shift in temperature response to sinusoidal heating at the skin surface. IEEE Trans Biomed Eng 46(9):1037–1043

    Article  CAS  PubMed  Google Scholar 

  8. Jimenez Lozano JN, Vacas-Jacques P, Anderson RR, Franco W (2013) E ffect of fibrous septa in radiofrequency heating of cutaneous and subcutaneous tissues: computational study. Lasers Surg Med 45(5):326–338

    Article  PubMed  Google Scholar 

  9. Singh S, Repaka R (2017) Effect of different breast density compositions on thermal damage of breast tumor during radiofrequency ablation. Appl Therm Eng 125:443–451

    Article  Google Scholar 

  10. Jiang SC, Zhang XX (2005) Effects of dynamic changes of tissue properties during laser-induced interstitial thermotherapy (LITT). Lasers Med Sci 19(4):197–202

    Article  CAS  PubMed  Google Scholar 

  11. Fanjul-Vélez F, Arce-Diego JL (2008) Modeling thermotherapy in vocal cords novel laser endoscopic treatment. Lasers Med Sci 23(2):169–177

    Article  PubMed  Google Scholar 

  12. Zhou J, Chen JK, Zhang Y (2009) Simulation of laser-induced thermotherapy using a dual-reciprocity boundary element model with dynamic tissue properties. IEEE Trans Biomed Eng 57(2):238–245

    Article  PubMed  Google Scholar 

  13. van Ruijven PW, Poluektova AA, van Gemert MJ, Neumann HM, Nijsten T, van der Geld CW (2014) Optical-thermal mathematical model for endovenous laser ablation of varicose veins. Lasers Med Sci 29(2):431–439

    Article  PubMed  Google Scholar 

  14. Fuentes D, Oden JT, Diller KR, Hazle JD, Elliott A, Shetty A, Stafford RJ (2009) Computational modeling and real-time control of patient-specific laser treatment of cancer. Ann Biomed Eng 37(4):763–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Marqa MF, Mordon S, Betrouni N (2012) Laser interstitial thermotherapy of small breast fibroadenomas: numerical simulations. Lasers Surg Med 44(10):832–839

    Article  PubMed  Google Scholar 

  16. Xu X, Meade A, Bayazitoglu Y (2011) Numerical investigation of nanoparticle-assisted laser-induced interstitial thermotherapy toward tumor and cancer treatments. Lasers Med Sci 26(2):213–222

    Article  PubMed  Google Scholar 

  17. Zhang J, Jin C, He ZZ, Liu J (2014) Numerical simulations on conformable laser-induced interstitial thermotherapy through combined use of multi-beam heating and biodegradable nanoparticles. Lasers Med Sci 29(4):1505–1516

    Article  PubMed  Google Scholar 

  18. Solovchuk MA, Sheu TW, Thiriet M, Lin WL (2013) On a computational study for investigating acoustic streaming and heating during focused ultrasound ablation of liver tumor. Appl Therm Eng 56(1–2):62–76

    Article  Google Scholar 

  19. Kabiri A, Talaee MR (2019) Theoretical investigation of thermal wave model of microwave ablation applied in prostate Cancer therapy. Heat Mass Transf 55(8):2199–2208

    Article  Google Scholar 

  20. Bhowmik A, Singh R, Repaka R, Mishra SC (2013) Conventional and newly developed bioheat transport models in vascularized tissues: a review. J Therm Biol 38(3):107–125

    Article  Google Scholar 

  21. Pennes HH (1948) Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol 1(2):93–122

    Article  CAS  PubMed  Google Scholar 

  22. Talaee, M. R., Kabiri, A., & Khodarahmi, R. (2018). Analytical solution of hyperbolic heat conduction equation in a finite medium under pulsatile heat source. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 42(3), 269–277

  23. Joseph DD, Preziosi L (1989) Heat waves. Rev Mod Phys 61:41

    Article  Google Scholar 

  24. Zhu, W., Xu, P., Xu, D., Zhang, M., Liu, H., Gong, L., & Lu, J. (2014). A study on oscillating second-kind boundary condition for Pennes equation considering thermal relaxation. The European Physical Journal Plus, 129(5), 94

  25. El-Bary AA, Youssef HM, Omar MA, Ramadan KT (2019) Influence of thermal wave emitted by the cellular devices on the human head. Microsyst Technol 25(2):413–422

    Article  Google Scholar 

  26. Andreozzi A, Brunese L, Iasiello M, Tucci C, Vanoli GP (2019) Modeling heat transfer in tumors: a review of thermal therapies. Ann Biomed Eng 47(3):676–693

    Article  PubMed  Google Scholar 

  27. Xu F, Seffen KA, Lu TJ (2008) Non-Fourier analysis of skin biothermomechanics. Int J Heat Mass Transf 51(9–10):2237–2259

    Article  CAS  Google Scholar 

  28. Zhou J, Chen JK, Zhang Y (2009) Dual-phase lag effects on thermal damage to biological tissues caused by laser irradiation. Comput Biol Med 39(3):286–293

    Article  PubMed  Google Scholar 

  29. Ströher GR, Ströher GL (2014) Numerical thermal analysis of skin tissue using parabolic and hyperbolic approaches. Int Commun Heat Mass Transf 57:193–199

    Article  Google Scholar 

  30. Askarizadeh H, Ahmadikia H (2015) Analytical study on the transient heating of a two-dimensional skin tissue using parabolic and hyperbolic bioheat transfer equations. Appl Math Model 39(13):3704–3720

    Article  Google Scholar 

  31. Lee HL, Lai TH, Chen WL, Yang YC (2013) An inverse hyperbolic heat conduction problem in estimating surface heat flux of a living skin tissue. Appl Math Model 37(5):2630–2643

    Article  Google Scholar 

  32. Jaunich M, Raje S, Kim K, Mitra K, Guo Z (2008) Bio-heat transfer analysis during short pulse laser irradiation of tissues. Int J Heat Mass Transf 51(23–24):5511–5521

    Article  Google Scholar 

  33. Talaee, M. R., & Kabiri, A. (2017). Analytical solution of hyperbolic bioheat equation in spherical coordinates applied in radiofrequency heating. Journal of Mechanics in Medicine and Biology, 17(04), 1750072

  34. Talaee, M. R., & Kabiri, A. (2017). Exact analytical solution of bioheat equation subjected to intensive moving heat source. Journal of Mechanics in Medicine and Biology, 17(05), 1750081

  35. Brix G, Seebass M, Hellwig G, Griebel J (2002) Estimation of heat transfer and temperature rise in partial-body regions during MR procedures: an analytical approach with respect to safety considerations. Magn Reson Imaging 20(1):65–76

    Article  PubMed  Google Scholar 

  36. Ahmadikia H, Moradi A, Fazlali R, Parsa AB (2012) Analytical solution of non-Fourier and Fourier bioheat transfer analysis during laser irradiation of skin tissue. J Mech Sci Technol 26(6):1937–1947

    Article  Google Scholar 

  37. Liu KC (2008) Thermal propagation analysis for living tissue with surface heating. Int J Therm Sci 47(5):507–513

    Article  Google Scholar 

  38. Hooshmand P, Moradi A, Khezry B (2015) Bioheat transfer analysis of biological tissues induced by laser irradiation. Int J Therm Sci 90:214–223

    Article  Google Scholar 

  39. Trujillo, M., Rivera, M. J., Molina, J. A. L., & Berjano, E. J. (2009). Analytical thermal–optic model for laser heating of biological tissue using the hyperbolic heat transfer equation. Math Med Biol, 26(3), 187–200

  40. Manns F, Borja D, Parel JMA, Smiddy WE, Culbertson W (2003) Semianalytical thermal model for subablative laser heating of homogeneous nonperfused biological tissue: application to laser thermokeratoplasty. J Biomed Opt 8(2):288–298

    Article  PubMed  Google Scholar 

  41. Talaee MR, Sarafrazi V, Bakhshandeh S (2016) Exact analytical hyperbolic temperature profile in a three-dimensional media under pulse surface heat flux. J Mech 32(3):339–347

    Article  Google Scholar 

  42. Talaee MR, Sarafrazi V (2017) Analytical solution for three-dimensional hyperbolic heat conduction equation with time-dependent and distributed heat source. J Mech 33(1):65–75

    Article  CAS  Google Scholar 

  43. Lopes A, Gomes R, Castiñeras M, Coelho JM, Santos JP, Vieira P (2020) Probing deep tissues with laser-induced thermotherapy using near-infrared light. Lasers Med Sci 35(1):43–49

    Article  PubMed  Google Scholar 

  44. Keangin P, Wessapan T, Rattanadecho P (2011) Analysis of heat transfer in deformed liver cancer modeling treated using a microwave coaxial antenna. Appl Therm Eng 31(16):3243–3254

    Article  Google Scholar 

  45. Jiang SC, Zhang XX (2005) Dynamic modeling of photothermal interactions for laser-induced interstitial thermotherapy: parameter sensitivity analysis. Lasers Med Sci 20(3–4):122–131

    Article  CAS  PubMed  Google Scholar 

  46. Ganguly M, Miller S, Mitra K (2015) Model development and experimental validation for analyzing initial transients of irradiation of tissues during thermal therapy using short pulse lasers. Lasers Surg Med 47(9):711–722

    Article  PubMed  Google Scholar 

  47. Cline HE, Anthony T (1977) Heat treating and melting material with a scanning laser or electron beam. J Appl Phys 48(9):3895–3900

    Article  CAS  Google Scholar 

  48. Shibib KS (2013) Finite element analysis of cornea thermal damage due to pulse incidental far IR laser. Lasers Med Sci 28(3):871–877

    Article  PubMed  Google Scholar 

  49. Asmar, Nakhlé H (2005) Partial differential equations with Fourier series and boundary value problems. Prentice Hall, pp 691–755

  50. Atefi G, Talaee MR (2011) Non-fourier temperature field in a solid homogeneous finite hollow cylinder. Arch Appl Mech 81(5):569–583

    Article  Google Scholar 

  51. Talaee MR, Atefi G (2011) Non-Fourier heat conduction in a finite hollow cylinder with periodic surface heat flux. Arch Appl Mech 81(12):1793–1806

    Article  Google Scholar 

  52. Talaee MR, Kabiri A, Ebrahimi M, Hakimzadeh B (2019) Analysis of induced interior air flow in subway train cabin due to accelerating and decelerating. Int J Vent 18(3):204–219

    Google Scholar 

  53. Sadeghzadeh, S., & Kabiri, A. (2016). Application of higher order Hamiltonian approach to the nonlinear vibration of micro electro mechanical systems. Latin Am J Solids Struct, 13(3), 478–497

  54. Sadeghzadeh S, Kabiri A (2017) A hybrid solution for analyzing nonlinear dynamics of electrostatically-actuated microcantilevers. Appl Math Model 48:593–606

    Article  Google Scholar 

  55. Modanloo A, Talaee MR (2020) Analytical thermal analysis of advanced disk brake in high speed vehicles. Mech Adv Mater Struct 27(3):209–217

    Article  Google Scholar 

  56. Talaee MR, Hosseinli SA (2019) Theoretical simulation of temperature distribution in a gun barrel based on the DPL model. J Theor Appl Mech:57

  57. Talaee, M., Alizadeh, M., & Bakhshandeh, S. (2014). An exact analytical solution of non-Fourier thermal stress in cylindrical shell under periodic boundary condition. Engineering Solid Mechanics, 2(4), 293–302

  58. Gheitaghy AM, Talaee MR (2013) Solving hyperbolic heat conduction using electrical simulation. J Mech Sci Technol 27(12):3885–3891

    Article  Google Scholar 

  59. Atefi, G., Bahrami, A., & Talaee, M. R. (2010). Analytical solution of dual phase lagging heat conduction in a hollow sphere with time-dependent heat flux. New Aspects of Fluid Mechanics, Heat Transfer and Environment, 1, 114–126

  60. Van de Sompel D, Kong TY, Ventikos Y (2009) Modelling of experimentally created partial-thickness human skin burns and subsequent therapeutic cooling: a new measure for cooling effectiveness. Med Eng Phys 31(6):624–631

    Article  PubMed  Google Scholar 

  61. Erez, A., & Shitzer, A. (1980). Controlled destruction and temperature distributions in biological tissues subjected to monoactive electrocoagulation

    Book  Google Scholar 

  62. He X, McGee S, Coad JE, Schmidlin F, Iaizzo PA, Swanlund DJ et al (2004) Investigation of the thermal and tissue injury behaviour in microwave thermal therapy using a porcine kidney model. Int J Hyperth 20(6):567–593

    Article  CAS  Google Scholar 

  63. Henriques Jr, F. C., & Moritz, A. R. (1947). Studies of thermal injury: I. The conduction of heat to and through skin and the temperatures attained therein. A theoretical and an experimental investigation. The American journal of pathology, 23(4), 530

  64. Su, Y. L., Chen, K. T., Chang, C. J., & Ting, K. (2017). Experiment and simulation of biotissue surface thermal damage during laser surgery. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 231(3), 581–589

  65. Museux N, Perez L, Autrique L, Agay D (2012) Skin burns after laser exposure: histological analysis and predictive simulation. Burns 38(5):658–667

    Article  PubMed  Google Scholar 

  66. Liu KC, Wang JC (2014) Analysis of thermal damage to laser irradiated tissue based on the dual-phase-lag model. Int J Heat Mass Transf 70:621–628

    Article  Google Scholar 

  67. Tung MM, Trujillo M, Molina JL, Rivera MJ, Berjano EJ (2009) Modeling the heating of biological tissue based on the hyperbolic heat transfer equation. Math Comput Model 50(5):665–672

    Article  Google Scholar 

  68. Mitra K, Kumar S, Vedevarz A, Moallemi MK (1995) Experimental evidence of hyperbolic heat conduction in processed meat. J Heat Transf 117(3):568–573

    Article  Google Scholar 

  69. Antaki, P. J. (2005). New interpretation of non-Fourier heat conduction in processed meat. Transactions of the ASME-C-Journal of Heat Transfer, 127(2), 189–193

Download references

Funding

This research is done in the Iran University of Science and Technology. There is not any funding source applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Talaee.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

It is confirmed that this work is original and is not sent anywhere, simultaneously.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The simplified relation of Rmnk(τ) is as follows:

$$ {R}_{mnk}\left(\tau \right)=\left[\frac{\psi_0\pi \sigma w\left(\beta {e}^{\left[\beta L\right]}-\beta Cos\left[L{\mu}_k\right]+{\mu}_k Sin\left[L{\mu}_k\right]\right)}{2{\alpha}^2{L}^4\left({\beta}^2+{\mu_k}^2\right)}\right]\times {e}^{-\left[\beta L+\frac{im\pi \left(L-\tau v\right)}{L}+\frac{2{\alpha}^2\left({L}^2-2 L\tau v+2{\tau}^2{v}^2\right)}{\sigma^2{w}^2}+\frac{\left({m}^2+{n}^2\right){\pi}^2{\sigma}^2{w}^2}{8{\alpha}^2{L}^2}\right]} $$
$$ \left[2\alpha L v\sqrt{\frac{2}{\pi }}{e}^{\left[-\frac{im\pi \tau v}{L}+\frac{2{\alpha}^2\tau v\left(-2L+\tau v\right)}{\sigma^2{w}^2}+\frac{m^2{\pi}^2{\sigma}^2{w}^2}{8{\alpha}^2{L}^2}\right]}\left(2{e}^{\left[ im\pi +\frac{2{\alpha}^2{L}^2}{\sigma^2{w}^2}\right]}-{e}^{\left[\frac{4{\alpha}^2 L\tau v}{\sigma^2{w}^2}\right]}\left(1+{e}^{\left[2 im\pi \right]}\right)\right)+\sigma w{e}^{\left[\frac{im\pi \left(L-2\tau v\right)}{L}+\frac{2{\alpha}^2\left({L}^2-2 L\tau v+2{\tau}^2{v}^2\right)}{\sigma^2{w}^2}\right]}\left({e}^{\left[\frac{2 im\pi \tau v}{L}\right]}\left[2L+ im\pi v\right]\left(\mathit{\operatorname{erf}}\left[\frac{\sqrt{2}\alpha \left(L-\tau v\right)}{\sigma w}-\frac{im\pi \sigma w}{2\sqrt{2}\alpha L}\right]+\mathit{\operatorname{erf}}\left[\frac{\sqrt{2}\alpha \tau v}{\sigma w}+\frac{im\pi \sigma w}{2\sqrt{2}\alpha L}\right]\right)+\left[2L- im\pi v\right]\left(\mathit{\operatorname{erf}}\left[\frac{\sqrt{2}\alpha \tau v}{\sigma w}-\frac{im\pi \sigma w}{2\sqrt{2}\alpha L}\right]+\mathit{\operatorname{erf}}\left[\frac{\sqrt{2}\alpha \left(L-\tau v\right)}{\sigma w}+\frac{im\pi \sigma w}{2\sqrt{2}\alpha L}\right]\right)\right)\right]\left[\mathit{\operatorname{erf}}\left[\frac{\sqrt{2}\alpha L}{\sigma w}-\frac{in\pi \sigma w}{2\sqrt{2}\alpha L}\right]+\mathit{\operatorname{erf}}\left[\frac{\sqrt{2}\alpha L}{\sigma w}+\frac{in\pi \sigma w}{2\sqrt{2}\alpha L}\right]\right] $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabiri, A., Talaee, M.R. Thermal field and tissue damage analysis of moving laser in cancer thermal therapy. Lasers Med Sci 36, 583–597 (2021). https://doi.org/10.1007/s10103-020-03070-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-020-03070-7

Keywords

Navigation