Skip to main content
Log in

Spin-dependent transport through a magnetic Möbius strip: comparison with a regular magnetic cylinder

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this work, we explore conformational effect on spin selective electron transmission considering a magnetic Möbius strip, a one-sided nonorientable surface. Unlike a regular magnetic cylinder, having a two-sided surface, a magnetic MS exhibits several peculiar phenomena in the presence of magnetic scattering of itinerant electrons with local magnetic moments at different lattice sites of the strip. Employing a tight-binding framework to describe the system, we use Green’s function formalism to investigate spin-dependent transport phenomena. Vertical hopping plays an important role, and for suitable hopping strength, we can have a high degree of spin polarization (\(>80\%\)) for a wide bias window, even when the Fermi energy is set at zero. The effects of ring size, system temperature, interface sensitivity, and spin-dependent scattering factor are critically investigated. A comparative analysis with a regular magnetic cylinder is also given, to reveal the impact of the topology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The data that support the findings of this study are available upon reasonable request from the authors.]

References

  1. J. Wang, E. Panagiotou, Sci. Rep. 12, 6384 (2022)

    Article  ADS  Google Scholar 

  2. J. Majhi, S.K. Maiti, S. Ganguly, Nanotechnology 33, 255704 (2022)

    Article  ADS  Google Scholar 

  3. C. Faugeras et al., ACS Nano 4, 1889 (2010)

    Article  Google Scholar 

  4. J. Bernholc, D. Brenner, M.B. Nardelli, V. Meunier, C. Roland, Annu. Rev. Mater. Res. 32, 347 (2002)

    Article  Google Scholar 

  5. J.H.E. Cartwright, D.L. Gonzalez, Math. Intell. 38, 69 (2016)

    Article  Google Scholar 

  6. E. Heilbronner, Tetrahedron Lett. 5, 1923 (1964)

    Article  Google Scholar 

  7. D.M. Walba, R.M. Richards, R.C. Haltiwanger, J. Am. Chem. Soc. 104, 3219 (1982)

    Article  Google Scholar 

  8. E. Miliordos, Phys. Rev. A 82, 062118 (2010)

    Article  ADS  Google Scholar 

  9. M. Mauksch, S.B. Tsogoeva, Chem. Eur. J. 27, 14660 (2021)

    Article  Google Scholar 

  10. Z. Li, L.R. Ram-Mohan, Phys. Rev. B 85, 195438 (2012)

    Article  ADS  Google Scholar 

  11. E. Miliordos, Phys. Rev. A 83, 062107 (2011)

    Article  ADS  Google Scholar 

  12. C. A. Pickover, The Möbius strip : Dr. August Möbius’s marvelous band in mathematics, games, literature, art, technology, and cosmology, New York: Thunder’s Mouth Press (2006)

  13. H. Ito, T. Sakaguchi, Phys. Lett. A 160, 424 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  14. T. Bauer et al., Science 347, 964 (2015)

    Article  ADS  Google Scholar 

  15. A. Quelle, C. Morais Smith, T. Kvorning, T.H. Hansson, Phys. Rev. B 94, 125137 (2016)

    Article  ADS  Google Scholar 

  16. S. Tanda et al., Nature 417, 397 (2002)

    Article  Google Scholar 

  17. G. Ouyang et al., Nat. Commun. 11, 5910 (2020)

    Article  ADS  Google Scholar 

  18. Z.Z. Nie et al., Nat. Commun. 12, 2334 (2021)

    Article  ADS  Google Scholar 

  19. S. Tanda, T. Tsuneta, Y. Okajima, K. Inagaki, K. Yamaya, N. Hatakenaka, Nature (London) 417, 397 (2002)

    Article  Google Scholar 

  20. C. Castro, C.M. Isborn, W.L. Karney, M. Mauksch, P.V.R. Schleyer, Org. Lett. 4, 3431 (2002)

    Article  Google Scholar 

  21. H.S. Rzepa, Chem. Rev. 105, 3697 (2005)

    Article  Google Scholar 

  22. J. Gravesen, M. Willatzen, Phys. Rev. A 72, 032108 (2005)

    Article  ADS  Google Scholar 

  23. S. Nakamura, K. Wakabayashi, A. Yamashiro, K. Harigaya, Physica E 22, 684 (2004)

    Article  ADS  Google Scholar 

  24. F. Mila, C.A. Stafford, S. Caponi, Phys. Rev. B 57, 1457 (1998)

    Article  ADS  Google Scholar 

  25. K. Yakubo, Y. Avishai, D. Cohen, Phys. Rev. B 67, 125319 (2003)

    Article  ADS  Google Scholar 

  26. M. Hayashi, H. Ebisawa, K. Kuboki, Phys. Rev. B 72, 024505 (2005)

    Article  ADS  Google Scholar 

  27. S.K. Maiti, Solid State Commun. 142, 398 (2007)

    Article  ADS  Google Scholar 

  28. V.M. Fomin, S. Kiravittaya, O.G. Schmidt, Phys. Rev. B 86, 195421 (2012)

    Article  ADS  Google Scholar 

  29. T. Prudencio, D.J. Cirilo-lombardo, Mod. Phys. Lett. A 28, 1350058 (2013)

    Article  ADS  Google Scholar 

  30. F. Mila, C. Staord, S. Capponi, Phys. Rev. B 57, 1457 (1998)

    Article  ADS  Google Scholar 

  31. E.M. Ferreira, M. Nemes, M. Sampaio, H. Weidenmller, Phys. Lett. A 333, 146 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  32. J. Majhi, S.K. Maiti, J. Phys. Condens. Matter 32, 325303 (2020)

    Article  Google Scholar 

  33. Z. Li, L.R. Ram-Mohan, J. Appl. Phys. 114, 164322 (2013)

    Article  ADS  Google Scholar 

  34. M. Hayashi, H. Ebisawa, J. Phys. Soc. Jpn. 70, 3495 (2001)

    Article  ADS  Google Scholar 

  35. R.E. Goldstein, H.K. Moatt, A.I. Pesci, R.L. Ricca, Proc. Natl. Acad. Sci. 107, 21979 (2010)

    Article  ADS  Google Scholar 

  36. E.L. Starostin, G.H.M. van der Heijden, Nat. Mat. 6, 563 (2007)

    Article  Google Scholar 

  37. J.M. Pond, IEEE Trans. Microw. Theory Tech. 48, 2465 (2000)

    Article  ADS  Google Scholar 

  38. J. Pond, Electron. Lett. 37, 836 (2001)

    Article  ADS  Google Scholar 

  39. D.J. Ballon, H.U. Voss, Phys. Rev. Lett. 101, 247701 (2008)

    Article  ADS  Google Scholar 

  40. W.T. Lu, F.Y. Wu, Phys. Rev. E 63, 026107 (2001)

    Article  ADS  Google Scholar 

  41. K. Kaneda, Y. Okabe, Phys. Rev. Lett. 86, 2134 (2001)

    Article  ADS  Google Scholar 

  42. M. Yoneya, K. Kuboki, M. Hayashi, Phys. Rev. B 78, 064419 (2008)

    Article  ADS  Google Scholar 

  43. A. Yamashiro, Y. Shimoi, K. Harigaya, K. Wakabayashi, Physica E 22, 688 (2004)

    Article  ADS  Google Scholar 

  44. Z. Guo, Z. Gong, H. Dong, C. Sun, Phys. Rev. B 80, 195310 (2009)

    Article  ADS  Google Scholar 

  45. A. Guclu, M. Grabowski, P. Hawrylak, Phys. Rev. B 87, 035435 (2013)

    Article  ADS  Google Scholar 

  46. O.V. Pylypovskyi, V.P. Kravchuk, D.D. Sheka, D. Makarov, O.G. Schmidt, Y. Gaididei, Phys. Rev. Lett. 114, 197204 (2015)

    Article  ADS  Google Scholar 

  47. D.E. Jiang, S. Dai, J. Phys. Chem. C 112, 5348 (2008)

    Article  Google Scholar 

  48. E.W.S. Caetano, V.N. Freire, S.G. dos Santos, D.S. Galvao, F. Sato, J. Chem. Phys. 128, 164719 (2008)

    Article  ADS  Google Scholar 

  49. J.W. Jiang, J.S. Wang, B. Li, J. Appl. Phys. 108, 064307 (2010)

    Article  ADS  Google Scholar 

  50. J.W. Jiang, J.S. Wang, B. Li, Eur. Phys. Lett. 89, 46005 (2010)

    Article  ADS  Google Scholar 

  51. X. Wang, X. Zheng, M. Ni, L. Zou, Z. Zeng, Appl. Phys. Lett. 97, 123103 (2010)

    Article  ADS  Google Scholar 

  52. S.Y. Yue, Q.B. Yan, Z.G. Zhu, H.J. Cui, Q.R. Zheng, G. Su, Carbon 71, 150 (2014)

    Article  Google Scholar 

  53. T. Korhonen, P. Koskinen, Compt. Mater. Sci. 81, 264 (2014)

    Article  Google Scholar 

  54. L.T. Huang, D.H. Lee, Phys. Rev. B 84, 193106 (2011)

    Article  ADS  Google Scholar 

  55. A.N. Enyashin, A.L. Ivanovskii, Phys. Solid State 48, 780 (2006)

    Article  ADS  Google Scholar 

  56. S. Azevedo, F. Moraes, and J. R. Kaschny, Eur. Phys. J. B 85 (2012)

  57. W. Beugeling, A. Quelle, C. Morais Smith, Phys. Rev. B 89, 235112 (2014)

    Article  ADS  Google Scholar 

  58. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnár, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Science 294, 1488 (2001)

    Article  ADS  Google Scholar 

  59. D.E. Nikonov, G.I. Bourianoff, P.A. Gargini, J. Supercond. Novel Magn. 19, 497 (2006)

    Article  Google Scholar 

  60. M. Johnson, R.H. Silsbee, Phys. Rev. Lett. 55, 1790 (1985)

    Article  ADS  Google Scholar 

  61. M.N. Baibich, J.M. Broto, A. Fert, F. NguyenVan Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988)

    Article  ADS  Google Scholar 

  62. I. Zutic, J. Fabian, S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004)

    Article  ADS  Google Scholar 

  63. S. Datta, B. Das, Appl. Phys. Lett. 56, 665 (1990)

    Article  ADS  Google Scholar 

  64. J.P. Lu, J.B. Yau, S.P. Shukla, M. Shayegan, L. Wissinger, U. Rössler, R. Winkler, Phys. Rev. Lett. 81, 1282 (1998)

    Article  ADS  Google Scholar 

  65. P. Zhang, Q.K. Xue, X.C. Xie, Phys. Rev. Lett. 91, 196602 (2003)

    Article  ADS  Google Scholar 

  66. W. Long, Q.F. Sun, H. Guo, J. Wang, Appl. Phys. Lett. 83, 1397 (2003)

    Article  ADS  Google Scholar 

  67. S. Sarkar, S.K. Maiti, Phys. Rev. B 100, 205402 (2019)

    Article  ADS  Google Scholar 

  68. D.D. Gupta, S.K. Maiti, Phys. Rev. B 106, 125420 (2022)

    Article  ADS  Google Scholar 

  69. Y.H. Su, S.H. Chen, C.D. Hu, C.-R. Chang, J. Phys. D Appl. Phys. 49, 015305 (2016)

    Article  ADS  Google Scholar 

  70. M. Patra, S.K. Maiti, J. Magn. Magn. Mater. 484, 408 (2019)

    Article  ADS  Google Scholar 

  71. M. Patra, S.K. Maiti, S. Sil, J. Phys.: Condens. Matter 31, 355303 (2019)

    Google Scholar 

  72. A.A. Shokri, M. Mardaani, K. Esfarjani, Physica E 27, 325 (2005)

    Article  ADS  Google Scholar 

  73. A.A. Shokri, M. Mardaani, Solid State Commun. 137, 53 (2006)

    Article  ADS  Google Scholar 

  74. M. Mardaani, A.A. Shokri, Chem. Phys. 324, 541 (2006)

    Article  Google Scholar 

  75. M. Sarkar, M. Dey, S.K. Maiti, S. Sil, Phys. Rev. B 102, 195435 (2020)

    Article  ADS  Google Scholar 

  76. M. Patra, S.K. Maiti, Sci. Rep. 7, 14313 (2017)

    Article  ADS  Google Scholar 

  77. D. Rai, M. Galperin, Phys. Rev. B 86, 045420 (2012)

    Article  ADS  Google Scholar 

  78. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  79. S. Datta, Quantum Transport: Atom to Transistor (Cambridge University Press, Cambridge, 2005)

    Book  MATH  Google Scholar 

  80. D.S. Fisher, P.A. Lee, Phys. Rev. B 23, 6851 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  81. M.D. Ventra, Electrical Transport in Nanoscale Systems (Cambridge University Press, Cambridge, 2008)

    Book  Google Scholar 

  82. B.K. Nikolic, P.B. Allen, J. Phys. Condens. Matter 12, 9629 (2000)

    Article  ADS  Google Scholar 

  83. Y.-J. Xiong, X.-T. Liang, Phys. Lett. A 330, 307 (2004)

    Article  ADS  Google Scholar 

  84. K. Walczak, Cent. Eur. J. Chem. 2, 524 (2004)

    Google Scholar 

  85. D. Rai, O. Hod, A. Nitzan, Phys. Rev. B 85, 155440 (2012)

    Article  ADS  Google Scholar 

  86. A.-M. Guo, Q.-F. Sun, Phys. Rev. B 86, 035424 (2012)

    Article  ADS  Google Scholar 

  87. B. Pal, R.A. Römer, A. Chakrabarti, J. Phys. Condens. Matter 28, 335301 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

JM is grateful to CSIR, India [Grant No. 09/093(0185)/2019-EMR-I] for providing his research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santanu K. Maiti.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majhi, J., Maiti, S.K. Spin-dependent transport through a magnetic Möbius strip: comparison with a regular magnetic cylinder. Eur. Phys. J. Plus 138, 546 (2023). https://doi.org/10.1140/epjp/s13360-023-04178-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04178-9

Navigation