Skip to main content
Log in

Inflationary phenomenology of non-minimally coupled Einstein–Chern–Simons gravity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this work, we investigate the inflationary era in the presence of a canonical scalar field and Chern–Simons parity violating corrections. It was also assumed that a non-minimal coupling between curvature and the scalar field is present. For the shake of completeness, the slow-roll and the constant-roll scenarios were examined separately. In the context of this scalar-tensor theory, inflation can be viable for both scenarios since the observational indices take acceptable values according to the most recent Planck data. Furthermore, the involvement of the Chern–Simons term has no effect on the background equations, in contrast to the scalar function which couples with the Ricci scalar and participates in the equations of motion. However, the Chern–Simons term ensures the chirality of stochastic gravitational waves. A blue-tilted tensor spectral index of primordial curvature perturbations can be manifested since, tensor modes are strongly affected by the Chern–Simons term. Lastly, the Swampland criteria and the Lyth-bound were examined in order to distinguish the effective field theories towards the path of a consistent M-theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

No Data associated in the manuscript.

References

  1. A.H. Guth, Phys. Rev. D 23, 347–356 (1981). https://doi.org/10.1103/PhysRevD.23.347

    Article  ADS  Google Scholar 

  2. C. Cheung, P. Creminelli, A.L. Fitzpatrick, J. Kaplan, L. Senatore, JHEP 03, 014 (2008). https://doi.org/10.1088/1126-6708/2008/03/014. arXiv:0709.0293 [hep-th]

    Article  ADS  Google Scholar 

  3. M. Satoh, S. Kanno, J. Soda, Phys. Rev. D 77, 023526 (2008). https://doi.org/10.1103/PhysRevD.77.023526. arXiv:0706.3585 [astro-ph]

    Article  ADS  Google Scholar 

  4. M. Satoh, J. Soda, JCAP 09, 019 (2008). https://doi.org/10.1088/1475-7516/2008/09/019. arXiv:0806.4594 [astro-ph]

    Article  ADS  Google Scholar 

  5. Y. Cai, Y.T. Wang, Y.S. Piao, JHEP 03, 024 (2017). https://doi.org/10.1007/JHEP03(2017)024. arXiv:1608.06508 [astro-ph.CO]

    Article  ADS  Google Scholar 

  6. Y. Cai, arXiv:2212.10893 [gr-qc]

  7. M. Zhu, Y. Cai, arXiv:2301.13502 [gr-qc]

  8. S. Boudet, F. Bombacigno, G.J. Olmo, P.J. Porfirio, JCAP 05(05), 032 (2022). https://doi.org/10.1088/1475-7516/2022/05/032. arXiv:2203.04000 [gr-qc]

    Article  ADS  Google Scholar 

  9. S. Boudet, F. Bombacigno, F. Moretti, G.J. Olmo, JCAP 01, 026 (2023). https://doi.org/10.1088/1475-7516/2023/01/026. arXiv:2209.14394 [gr-qc]

    Article  ADS  Google Scholar 

  10. F. Bombacigno, F. Moretti, S. Boudet, G.J. Olmo, JCAP 02, 009 (2023). https://doi.org/10.1088/1475-7516/2023/02/009. arXiv:2210.07673 [gr-qc]

    Article  ADS  Google Scholar 

  11. S. Kawai, J. Kim, Phys. Lett. B 789, 145–149 (2019). https://doi.org/10.1016/j.physletb.2018.12.019. arXiv:1702.07689 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  12. S. Nojiri, S.D. Odintsov, V.K. Oikonomou, A.A. Popov, Phys. Dark Univ. 28, 100514 (2020). https://doi.org/10.1016/j.dark.2020.100514. arXiv:2002.10402 [gr-qc]

    Article  Google Scholar 

  13. S. Nojiri, S.D. Odintsov, V.K. Oikonomou, A.A. Popov, Phys. Rev. D 100(8), 084009 (2019). https://doi.org/10.1103/PhysRevD.100.084009. arXiv:1909.01324 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  14. S.D. Odintsov, V.K. Oikonomou, Phys. Rev. D 99(10), 104070 (2019). https://doi.org/10.1103/PhysRevD.99.104070. arXiv:1905.03496 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  15. S.D. Odintsov, V.K. Oikonomou, Phys. Rev. D 99(6), 064049 (2019). https://doi.org/10.1103/PhysRevD.99.064049. arXiv:1901.05363 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  16. S. Alexander, N. Yunes, Phys. Rep. 480, 1–55 (2009). https://doi.org/10.1016/j.physrep.2009.07.002. arXiv:0907.2562 [hepth]

    Article  ADS  MathSciNet  Google Scholar 

  17. J. Qiao, T. Zhu, W. Zhao, A. Wang, Phys. Rev. D 101(4), 043528 (2020). https://doi.org/10.1103/PhysRevD.101.043528. arXiv:1911.01580 [astro-ph.CO]

    Article  ADS  MathSciNet  Google Scholar 

  18. A. Nishizawa, T. Kobayashi, Phys. Rev. D 98(12), 124018 (2018). https://doi.org/10.1103/PhysRevD.98.124018. arXiv:1809.00815 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  19. P. Wagle, N. Yunes, D. Garfinkle, L. Bieri, Class. Quant. Grav. 36(11), 115004. https://doi.org/10.1088/1361-6382/ab0eed. arXiv:1812.05646 [gr-qc]

  20. K. Yagi, N. Yunes, T. Tanaka, Phys. Rev. Lett. 109, 251105 (2012) [erratum: Phys. Rev. Lett. 116(16), 169902 (2016); erratum: Phys. Rev. Lett. 124(2), 029901 (2020)]. https://doi.org/10.1103/PhysRevLett.116.169902. arXiv:1208.5102 [gr-qc]

  21. K. Yagi, N. Yunes, T. Tanaka, Phys. Rev. D 86, 044037 (2012) [erratum: Phys. Rev. D 89, 049902 (2014)]. https://doi.org/10.1103/PhysRevD.86.044037. arXiv:1206.6130 [gr-qc]

  22. C. Molina, P. Pani, V. Cardoso, L. Gualtieri, Phys. Rev. D 81, 124021 (2010). https://doi.org/10.1103/PhysRevD.81.124021. arXiv:1004.4007 [gr-qc]

    Article  ADS  Google Scholar 

  23. F. Izaurieta, E. Rodriguez, P. Minning, P. Salgado, A. Perez, Phys. Lett. B 678, 213–217 (2009). https://doi.org/10.1016/j.physletb.2009.06.017. arXiv:0905.2187 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  24. T.L. Smith, A.L. Erickcek, R.R. Caldwell, M. Kamionkowski, Phys. Rev. D 77, 024015 (2008). https://doi.org/10.1103/PhysRevD.77.024015. arXiv:0708.0001 [astro-ph]

    Article  ADS  Google Scholar 

  25. K. Konno, T. Matsuyama, S. Tanda, Prog. Theor. Phys. 122, 561–568 (2009). https://doi.org/10.1143/PTP.122.561. arXiv:0902.4767 [gr-qc]

    Article  ADS  Google Scholar 

  26. C.F. Sopuerta, N. Yunes, Phys. Rev. D 80, 064006 (2009). https://doi.org/10.1103/PhysRevD.80.064006. arXiv:0904.4501 [gr-qc]

    Article  ADS  Google Scholar 

  27. H.J. Matschull, Class. Quant. Grav. 16, 2599–2609 (1999). https://doi.org/10.1088/0264-9381/16/8/303. arXiv:gr-qc/9903040 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  28. Z. Haghani, T. Harko, S. Shahidi, Eur. Phys. J. C 77(8), 514 (2017). https://doi.org/10.1140/epjc/s10052-017-5078-0. arXiv:1704.06539 [gr-qc]

    Article  ADS  Google Scholar 

  29. F.P. Fronimos, S.A. Venikoudis, Int. J. Mod. Phys. A 36(30), 2150229 (2021). https://doi.org/10.1142/S0217751X21502298. arXiv:2110.12457 [gr-qc]

    Article  ADS  Google Scholar 

  30. S.A. Venikoudis, F.P. Fronimos, Gen. Rel. Grav. 53(8), 75 (2021). https://doi.org/10.1007/s10714-021-02846-8. arXiv:2107.09457 [gr-qc]

    Article  ADS  Google Scholar 

  31. A. Gitsis, K.R. Revis, S.A. Venikoudis, F.P. Fronimos, arXiv:2301.08126 [gr-qc]

  32. S. Vagnozzi, Mon. Not. Roy. Astron. Soc. 502(1), L11–L15 (2021). https://doi.org/10.1093/mnrasl/slaa203. arXiv:2009.13432 [astro-ph.CO]

  33. S. Kuroyanagi, T. Takahashi, S. Yokoyama, JCAP 01, 071 (2021). https://doi.org/10.1088/1475-7516/2021/01/071. arXiv:2011.03323 [astro-ph.CO]

  34. M. Benetti, L.L. Graef, S. Vagnozzi, Phys. Rev. D 105(4), 043520 (2022). https://doi.org/10.1103/PhysRevD.105.043520. arXiv:2111.04758 [astro-ph.CO]

    Article  ADS  Google Scholar 

  35. S.D. Odintsov, V.K. Oikonomou, Phys. Rev. D 105(10), 104054 (2022). https://doi.org/10.1103/PhysRevD.105.104054. arXiv:2205.07304 [gr-qc]

    Article  ADS  Google Scholar 

  36. R. Camerini, R. Durrer, A. Melchiorri, A. Riotto, R. Durrer, A. Melchiorri, A. Riotto, Phys. Rev. D 77, 101301 (2008). https://doi.org/10.1103/PhysRevD.77.101301. arXiv:0802.1442 [astro-ph]

    Article  ADS  Google Scholar 

  37. S. Kuroyanagi, T. Takahashi, S. Yokoyama, JCAP 02, 003 (2015). https://doi.org/10.1088/1475-7516/2015/02/003. arXiv:1407.4785 [astro-ph.CO]

    Article  ADS  Google Scholar 

  38. C. Vafa, arXiv:hep-th/0509212

  39. H. Ooguri, C. Vafa, Nucl. Phys. B 766, 21 (2007). https://doi.org/10.1016/j.nuclphysb.2006.10.033. arXiv:hep-th/0605264

    Article  ADS  Google Scholar 

  40. S. Kawai, J. Kim, Phys. Rev. D 104(4), 043525 (2021). https://doi.org/10.1103/PhysRevD.104.043525. arXiv:2105.04386 [hep-ph]

    Article  ADS  Google Scholar 

  41. E. Palti, C. Vafa, T. Weigand, arXiv:2003.10452 [hep-th]

  42. S. Mizuno, S. Mukohyama, S. Pi, Y.L. Zhang, Phys. Rev. D 102(2), 021301 (2020). https://doi.org/10.1103/PhysRevD.102.021301. arXiv:1910.02979 [astro-ph.CO]

    Article  ADS  Google Scholar 

  43. R. Brandenberger, V. Kamali, R.O. Ramos, arXiv:2002.04925 [hep-th]

  44. R. Blumenhagen, M. Brinkmann, A. Makridou, JHEP 2002, 064 (2020). https://doi.org/10.1007/JHEP02(2020)064. arXiv:1910.10185 [hep-th]

  45. Z. Wang, R. Brandenberger, L. Heisenberg, arXiv:1907.08943 [hep-th]

  46. E. Palti, Fortsch. Phys. 67(6), 1900037 (2019). https://doi.org/10.1002/prop.201900037. arXiv:1903.06239 [hep-th]

    Article  ADS  Google Scholar 

  47. R.G. Cai, S. Khimphun, B.H. Lee, S. Sun, G. Tumurtushaa, Y.L. Zhang, Phys. Dark Univ. 26, 100387 (2019). https://doi.org/10.1016/j.dark.2019.100387. arXiv:1812.11105 [hep-th]

    Article  Google Scholar 

  48. Y. Akrami, R. Kallosh, A. Linde, V. Vardanyan, Fortsch. Phys. 67(1–2), 1800075 (2019). https://doi.org/10.1002/prop.201800075. arXiv:1808.09440 [hep-th]

    Article  ADS  Google Scholar 

  49. S. Mizuno, S. Mukohyama, S. Pi, Y.L. Zhang, JCAP 1909(09), 072 (2019). https://doi.org/10.1088/1475-7516/2019/09/072. arXiv:1905.10950 [hep-th]

    Article  ADS  Google Scholar 

  50. V. Aragam, S. Paban, R. Rosati, arXiv:1905.07495 [hep-th]

  51. S. Brahma, M.W. Hossain, Phys. Rev. D 100(8), 086017 (2019). https://doi.org/10.1103/PhysRevD.100.086017. arXiv:1904.05810 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  52. U. Mukhopadhyay, D. Majumdar, Phys. Rev. D 100(2), 024006 (2019). https://doi.org/10.1103/PhysRevD.100.024006. arXiv:1904.01455 [gr-qc]

    Article  ADS  Google Scholar 

  53. Z. Yi, Y. Gong, Universe 5(9), 200 (2019). https://doi.org/10.3390/universe5090200. arXiv:1811.01625 [gr-qc]

    Article  ADS  Google Scholar 

  54. S.N. Gashti, J. Sadeghi, B. Pourhassan, Astropart. Phys. 139, 102703 (2022). https://doi.org/10.1016/j.astropartphys.2022.102703. arXiv:2202.06381 [astro-ph.CO]

    Article  Google Scholar 

  55. S. Brahma, M.W. Hossain, JHEP 1906, 070 (2019). https://doi.org/10.1007/JHEP06(2019)070. arXiv:1902.11014 [hep-th]

  56. M.R. Haque, D. Maity, Phys. Rev. D 99(10), 103534 (2019). https://doi.org/10.1103/PhysRevD.99.103534. arXiv:1902.09491 [hep-th]

  57. J.J. Heckman, C. Lawrie, L. Lin, J. Sakstein, G. Zoccarato, Fortsch. Phys. 67(11), 1900071 (2019). https://doi.org/10.1002/prop.201900071. arXiv:1901.10489 [hep-th]

    Article  ADS  Google Scholar 

  58. B.S. Acharya, A. Maharana, F. Muia, JHEP 1903, 048 (2019). https://doi.org/10.1007/JHEP03(2019)048. arXiv:1811.10633 [hep-th]

    Article  ADS  Google Scholar 

  59. E. Elizalde, M. Khurshudyan, Phys. Rev. D 99(10), 103533 (2019). https://doi.org/10.1103/PhysRevD.99.103533. arXiv:1811.03861 [astro-ph.CO]

    Article  ADS  MathSciNet  Google Scholar 

  60. D.Y. Cheong, S.M. Lee, S.C. Park, Phys. Lett. B 789, 336 (2019). https://doi.org/10.1016/j.physletb.2018.12.046. arXiv:1811.03622 [hep-ph]

    Article  ADS  Google Scholar 

  61. J.J. Heckman, C. Lawrie, L. Lin, G. Zoccarato, Fortsch. Phys. 67(10), 1900057 (2019). https://doi.org/10.1002/prop.201900057. arXiv:1811.01959 [hep-th]

    Article  ADS  Google Scholar 

  62. W.H. Kinney, S. Vagnozzi, L. Visinelli, Class. Quant. Grav. 36(11), 117001 (2019). https://doi.org/10.1088/1361-6382/ab1d87. arXiv:1808.06424 [astro-ph.CO]

    Article  ADS  Google Scholar 

  63. S.K. Garg, C. Krishnan, JHEP 1911, 075 (2019). https://doi.org/10.1007/JHEP11(2019)075. arXiv:1807.05193 [hep-th]

    Article  ADS  Google Scholar 

  64. C.M. Lin, Phys. Rev. D 99(2), 023519 (2019). https://doi.org/10.1103/PhysRevD.99.023519. arXiv:1810.11992 [astro-ph.CO]

    Article  ADS  MathSciNet  Google Scholar 

  65. S.C. Park, JCAP 1901, 053 (2019). https://doi.org/10.1088/1475-7516/2019/01/053. arXiv:1810.11279 [hep-ph]

    Article  ADS  Google Scholar 

  66. Y. Olguin-Trejo, S.L. Parameswaran, G. Tasinato, I. Zavala, JCAP 1901, 031 (2019). https://doi.org/10.1088/1475-7516/2019/01/031. arXiv:1810.08634 [hep-th]

    Article  ADS  Google Scholar 

  67. H. Fukuda, R. Saito, S. Shirai, M. Yamazaki, Phys. Rev. D 99(8), 083520 (2019). https://doi.org/10.1103/PhysRevD.99.083520. arXiv:1810.06532 [hep-th]

    Article  ADS  Google Scholar 

  68. S.J. Wang, Phys. Rev. D 99(2), 023529 (2019). https://doi.org/10.1103/PhysRevD.99.023529. arXiv:1810.06445 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  69. H. Ooguri, E. Palti, G. Shiu, C. Vafa, Phys. Lett. B 788, 180 (2019). https://doi.org/10.1016/j.physletb.2018.11.018. arXiv:1810.05506 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  70. H. Matsui, F. Takahashi, M. Yamada, Phys. Lett. B 789, 387 (2019). https://doi.org/10.1016/j.physletb.2018.12.055. arXiv:1809.07286 [astro-ph.CO]

    Article  ADS  Google Scholar 

  71. G. Obied, H. Ooguri, L. Spodyneiko, C. Vafa, arXiv:1806.08362 [hep-th]

  72. P. Agrawal, G. Obied, P.J. Steinhardt, C. Vafa, Phys. Lett. B 784, 271 (2018). https://doi.org/10.1016/j.physletb.2018.07.040. arXiv:1806.09718 [hep-th]

    Article  ADS  Google Scholar 

  73. H. Murayama, M. Yamazaki, T.T. Yanagida, JHEP 1812, 032 (2018). https://doi.org/10.1007/JHEP12(2018)032. arXiv:1809.00478 [hep-th]

    Article  ADS  Google Scholar 

  74. M.C. David Marsh, Phys. Lett. B 789, 639 (2019). https://doi.org/10.1016/j.physletb.2018.11.001. arXiv:1809.00726 [hep-th]

  75. S.D. Storm, R.J. Scherrer, Phys. Rev. D 102(6), 063519 (2020). https://doi.org/10.1103/PhysRevD.102.063519. arXiv:2008.05465 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  76. O. Trivedi, arXiv:2008.05474 [hep-th]

  77. U.K. Sharma, arXiv:2005.03979 [physics.gen-ph]

  78. S.D. Odintsov, V.K. Oikonomou, Phys. Lett. B 805, 135437 (2020). https://doi.org/10.1016/j.physletb.2020.135437. arXiv:2004.00479 [gr-qc]

    Article  MathSciNet  Google Scholar 

  79. A. Mohammadi, T. Golanbari, J. Enayati, S. Jalalzadeh, K. Saaidi, arXiv:2011.13957 [gr-qc]

  80. O. Trivedi, arXiv:2011.14316 [astro-ph.CO]

  81. V.K. Oikonomou, I. Giannakoudi, A. Gitsis, K.R. Revis, Int. J. Mod. Phys. D 31(02), 2250001 (2022). https://doi.org/10.1142/S0218271822500018. arXiv:2105.11935 [gr-qc]

    Article  ADS  Google Scholar 

  82. M. Benetti, S. Capozziello, L.L. Graef, Phys. Rev. D 100(8), 084013 (2019). https://doi.org/10.1103/PhysRevD.100.084013. arXiv:1905.05654 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  83. J.C. Hwang, H. Noh, Phys. Rev. D 71, 063536 (2005). https://doi.org/10.1103/PhysRevD.71.063536. arXiv:gr-qc/0412126 [gr-qc]

    Article  ADS  Google Scholar 

  84. G.G.L. Nashed, S. Nojiri, JCAP 02, 033 (2023). https://doi.org/10.1088/1475-7516/2023/02/033

    Article  ADS  Google Scholar 

  85. Y. Akrami et al., Planck. Astron. Astrophys. 641, A10 (2020). https://doi.org/10.1051/0004-6361/201833887. arXiv:1807.06211 [astro-ph.CO]

    Article  Google Scholar 

  86. M. Kamionkowski, E.D. Kovetz, Ann. Rev. Astron. Astrophys. 54, 227–269 (2016). https://doi.org/10.1146/annurev-astro-081915-023433. arXiv:1510.06042 [astro-ph.CO]

    Article  ADS  Google Scholar 

  87. W. Giarè, F. Renzi, Phys. Rev. D 102(8), 083530 (2020). https://doi.org/10.1103/PhysRevD.102.083530. arXiv:2007.04256 [astro-ph.CO]

    Article  ADS  MathSciNet  Google Scholar 

  88. S.D. Odintsov, V.K. Oikonomou, R. Myrzakulov, Symmetry 14(4), 729 (2022). https://doi.org/10.3390/sym14040729. arXiv:2204.00876 [gr-qc]

    Article  ADS  Google Scholar 

  89. A. Mitra, J. Mifsud, D.F. Mota, D. Parkinson, Mon. Not. Roy. Astron. Soc. 502(4), 5563–5575 (2021). https://doi.org/10.1093/mnras/stab165. arXiv:2010.00189 [astro-ph.CO]

    Article  ADS  Google Scholar 

  90. R. D’Agostino, R.C. Nunes, Phys. Rev. D 100(4), 044041 (2019). https://doi.org/10.1103/PhysRevD.100.044041. arXiv:1907.05516 [gr-qc]

    Article  ADS  Google Scholar 

  91. R.C. Nunes, M.E.S. Alves, J.C.N. de Araujo, Phys. Rev. D 99(8), 084022 (2019). https://doi.org/10.1103/PhysRevD.99.084022. arXiv:1811.12760 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  92. E.V. Linder, arXiv:2108.11526 [astro-ph.CO]

  93. M. Zarei, Class. Quant. Grav. 33(11), 115008 (2016). https://doi.org/10.1088/0264-9381/33/11/115008. arXiv:1408.6467 [astro-ph.CO]

    Article  ADS  Google Scholar 

  94. A. Nishizawa, K. Yagi, A. Taruya, T. Tanaka, Phys. Rev. D 85, 044047 (2012). https://doi.org/10.1103/PhysRevD.85.044047. arXiv:1110.2865 [astro-ph.CO]

    Article  ADS  Google Scholar 

  95. S.D. Odintsov, V.K. Oikonomou, F.P. Fronimos, Phys. Dark Univ. 35, 100950 (2022). https://doi.org/10.1016/j.dark.2022.100950. arXiv:2108.11231 [gr-qc]

    Article  Google Scholar 

  96. D.H. Lyth, Phys. Rev. Lett. 78, 1861–1863 (1997). https://doi.org/10.1103/PhysRevLett.78.1861. arXiv:hep-ph/9606387 [hep-ph]

    Article  ADS  Google Scholar 

  97. V.K. Oikonomou, Int. J. Geom. Meth. Mod. Phys. 19(07), 2250099 (2022). https://doi.org/10.1142/S0219887822500992. arXiv:2106.10778 [gr-qc]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Venikoudis.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fronimos, F.P., Venikoudis, S.A. Inflationary phenomenology of non-minimally coupled Einstein–Chern–Simons gravity. Eur. Phys. J. Plus 138, 529 (2023). https://doi.org/10.1140/epjp/s13360-023-04149-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04149-0

Navigation