Skip to main content
Log in

Electromagnetically induced transparencies with two transverse Bose–Einstein condensates in a four-mirror cavity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We investigate electromagnetically induced transparencies with two transverse Bose–Einstein condensates in four-mirror optical cavity, driven by a strong pump laser and a weak probe laser. The cavity mode, after getting split from beam splitter, interacts with two independent Bose–Einstein condensates transversely trapped in the arms of the cavity along x-axis and y-axis. The interaction of intra-cavity optical mode excites momentum side modes in Bose–Einstein condensates, which then mimic as two atomic mirrors coupled through cavity field. We show that the probe field photons transition through the atomic mirrors yields to two coupled electromagnetically induced transparency windows, which only exist when both atomic states are coupled with the cavity. Further, the strength of these novel electromagnetically induced transparencies gets increased with an increase in atom-cavity coupling. Furthermore, we investigate the behavior of Fano resonances and dynamics of fast and slow light. We illustrate that the Fano line shapes and dynamics of slow light can be enhanced by strengthening the interaction between atomic states and cavity mode. Our findings not only contribute to the quantum nonlinear optics of complex systems but also provide a platform to test multidimensional atomic states in a single system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The computational data generated and analyzed to obtain the results during study is available from the corresponding author upon reasonable request.

References

  1. D.E. Chang, V. Vuletic′, M.D. Lukin, Nat. Photon. 8, 685–694 (2014)

  2. K.E. Dorfman, F. Schlawin, S. Mukamel, Rev. Mod. Phys. 88, 045008 (2016)

    Article  ADS  Google Scholar 

  3. T. Peyronel et al., Nature 488, 57–60 (2012)

    Article  ADS  Google Scholar 

  4. H.J. Kimble, Nature 453, 1023–1030 (2008)

    Article  ADS  Google Scholar 

  5. A.I. Lvovksy, B.C. Sanders, W. Tittel, Nat. Photon. 3, 706–714 (2009)

    Article  ADS  Google Scholar 

  6. D.A.B. Miller, Nat. Photon. 4, 3–5 (2010)

    Article  ADS  Google Scholar 

  7. M. Fleischhauer, A. Imamoglu, J.P. Marangos, Rev. Mod. Phys. 77, 633 (2005)

    Article  ADS  Google Scholar 

  8. M.D. Lukin, A. Imamoğlu, Nature 413, 273–276 (2001)

  9. M.D. Eisaman et al., Nature 438, 837–841 (2005)

    Article  ADS  Google Scholar 

  10. S. Haroche, Rev. Mod. Phys. 85, 1083 (2013)

    Article  ADS  Google Scholar 

  11. M. Albert, A. Dantan, M. Drewsen, Nat. Photon. 5, 633–636 (2011)

    Article  ADS  Google Scholar 

  12. M. Mücke et al., Nature 465, 755–758 (2010)

    Article  ADS  Google Scholar 

  13. T. Kampschulte et al., Phys. Rev. A 89, 033404 (2014)

    Article  ADS  Google Scholar 

  14. J.A. Souza et al., Phys. Rev. Lett. 111, 113602 (2013)

    Article  ADS  Google Scholar 

  15. A. Grankin et al., Phys. Rev. Lett. 117, 253602 (2016)

    Article  ADS  Google Scholar 

  16. J. Sheng et al., Phys. Rev. A 96, 033813 (2017)

    Article  ADS  Google Scholar 

  17. A.H. Safavi-Naeini et al., Nature 472, 69–73 (2011)

    Article  ADS  Google Scholar 

  18. M.S. Aspelmeyer, T.J. Kippenberg, F. Marquardt, Rev. Mod. Phys. 86, 1391 (2014)

    Article  ADS  Google Scholar 

  19. K.A. Yasir, W.M. Liu, Sci. Rep. 6, 22651 (2016)

    Article  ADS  Google Scholar 

  20. K.A. Yasir, L. Zhuang, W.M. Liu, Phys. Rev. A 95, 013810 (2017)

    Article  ADS  Google Scholar 

  21. K.A. Yasir, M. Ayub, F. Saif, J. Mod. Opt. 61, 1318 (2014)

    Article  ADS  Google Scholar 

  22. M. Paternostro, G.D. Chiara, G.M. Palma, Phys. Rev. Lett. 104, 243602 (2010)

    Article  ADS  Google Scholar 

  23. M.F. Limonov et al., Nat. Photon. 11, 543–554 (2017)

    Article  Google Scholar 

  24. K. Qu, G.S. Agarwal, Phys. Rev. A 87, 063813 (2013)

    Article  ADS  Google Scholar 

  25. S. Stassi et al., Sci. Rep. 7, 1065 (2017)

    Article  ADS  Google Scholar 

  26. A. Motazedifard, A. Dalafi, F. Bemani, M.H. Naderi, Phys. Rev. A 100(2), 023815 (2019)

  27. A. Motazedifard, A. Dalafi, M.H. Naderi, arXiv:2011.01336v1 [quant-ph] (2020)

  28. A. Motazedifard, A. Dalafi, M.H. Naderi, R. Roknizadeh, Ann. Phys. 405, 202–219 (2019)

  29. A. Motazedifard, A. Dalafi, M.H. Naderi, R. Roknizadeh, Ann. Phys. 396, 202–219 (2018)

  30. A. Dalafi, M.H. Naderi, A. Motazedifard. Phys. Rev. A 97, 043619 (2018)

  31. K. Qu, G.S. Agarwal, Phys. Rev. A 87, 031802(R) (2013)

    Article  ADS  Google Scholar 

  32. G.S. Agarwal, S. Huang, Phys. Rev. A 81, 041803(R) (2010)

    Article  ADS  Google Scholar 

  33. S. Weis et al., Science 330, 1520–1523 (2010)

    Article  ADS  Google Scholar 

  34. K.A. Yasir, W.M. Liu, Sci. Rep. 5, 10612 (2015)

    Article  ADS  Google Scholar 

  35. Y. Chang et al., Phys. Rev. A 83, 063826 (2011)

    Article  ADS  Google Scholar 

  36. Y. Turek, Y. Li, C.P. Sun, Phys. Rev. A 88, 053827 (2013)

    Article  ADS  Google Scholar 

  37. A. Sohail, Y. Zhang, J. Zhang, C.S. Yu, Sci. Rep. 6, 28830 (2016)

    Article  ADS  Google Scholar 

  38. M.J. Akram, F. Ghafoor, F. Saif, J. Phys. B: At. Mol. Opt. Phys. 48, 065502 (2015)

    Article  ADS  Google Scholar 

  39. M.J. Akram, F. Ghafoor, M.M. Khan, F. Saif, Phys. Rev. A 95, 023810 (2017)

    Article  ADS  Google Scholar 

  40. H. Hao et al., Phys. Rev. A 100, 023820 (2019)

    Article  ADS  Google Scholar 

  41. P.-C. Ma et al., Phys. Rev. A 90, 043825 (2014)

    Article  ADS  Google Scholar 

  42. S. Shahidani, M.H. Naderi, M. Soltanolkotabi, Phys. Rev. A 88, 053813 (2013)

    Article  ADS  Google Scholar 

  43. S. Huang, J. Phys. B: At. Mol. Opt. Phys. 47, 055504 (2014)

    Article  ADS  Google Scholar 

  44. K.A. Yasir, L. Zhuang, W.M. Liu, npj Quantum Inf. 8, 109 (2022)

  45. J.F. Scott, Rev. Mod. Phys. 46, 83 (1974)

    Article  ADS  Google Scholar 

  46. A.E. Miroshnichenko, S. Flach, Y.S. Kivshar, Rev. Mod. Phys. 82, 2257 (2010)

  47. N. Pramanik, K.C. Yellapragada, S. Singh, P.A. Lakshmi, Phys. Rev. A 101, 043802 (2020)

    Article  ADS  Google Scholar 

  48. F. Farman, A. Bahrampour, Research in Optical Science, OSA Technical Digest (online) (Optical Society of America, 2014), paper JW2A.44

  49. K.A. Yasir, Opt. Commun. 488, 126820 (2021)

    Article  Google Scholar 

  50. W.C. Ge, M. Al-Amri, H. Nha, M.S. Zubairy, Phys. Rev. A88, 052301 (2013)

  51. P. Fritschel, M. Evans, V. Frolov, Opt. Express 22, 4224 (2014)

    Article  ADS  Google Scholar 

  52. B. Teklu, T. Byrnes, F.S. Khan, Phys. Rev. A 97, 023829 (2018)

  53. L. Zhou, Y. Han, J.I Jing, W. Zhang, Phys. Rev. A 83, 052117 (2011)

  54. F. Brennecke, S. Ritter, T. Donner, T. Esslinger, Science 322, 235–238 (2008)

    Article  ADS  Google Scholar 

  55. B.P. Abbott et al., Phys. Rev. Lett. 116, 061102 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  56. Y. Ma et al., Phys. Rev. Lett. 113, 151102 (2014)

    Article  ADS  Google Scholar 

  57. P. Horak, S.M. Barnett, H. Ritsch, Phys. Rev. A 61, 033609 (2000)

    Article  ADS  Google Scholar 

  58. K. Zhang, W. Chen, M. Bhattacharya, P. Meystre, Phys. Rev. A 81, 013802 (2010)

    Article  ADS  Google Scholar 

  59. C. Genes, D. Vitali, P. Tombesi, S. Gigan, M. Aspelmeyer, Phys. Rev. A 77, 033804 (2008)

    Article  ADS  Google Scholar 

  60. M. Ayub, K.A. Yasir, F. Saif, Laser Phys. 24, 115503 (2014)

    Article  ADS  Google Scholar 

  61. F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Kohl, T.J. Kippenberg, Nature 450, 268 (2007)

    Article  ADS  Google Scholar 

  62. T.J. Kippenberg, K.J. Vahala, Science 321, 1172 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

K.A.Y. acknowledges the support of Research Fund for International Young Scientists by NSFC under Grant Nos. KYZ04Y22050, KYZ04Y22165, Zhejiang Normal University research funding under Grant No. ZC304021914 and Zhejiang province postdoctoral research project under Grant Number ZC304021952. L.Z.X. is supported by Zhejiang Provincial Natural Science Foundation of China under Grant No. LZ21A040001 and the National Natural Science Foundation of China under Grant No. 12074344. W.M.L. acknowledges the support from National Key R&D Program of China under grants No. 2021YFA1400900, 2021YFA0718300, 2021YFA1402100, NSFC under grants Nos. 61835013, 12174461, 12234012, Space Application System of China Manned Space Program. G.X.L. acknowledges the support of National Natural Science Foundation of China under Grant Nos. 11835011 and 11774316.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kashif Ammar Yasir.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yasir, K.A., Liang, Z., Liu, WM. et al. Electromagnetically induced transparencies with two transverse Bose–Einstein condensates in a four-mirror cavity. Eur. Phys. J. Plus 138, 29 (2023). https://doi.org/10.1140/epjp/s13360-022-03631-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03631-5

Navigation