Skip to main content
Log in

Bose–Einstein condensates in an optical cavity with sub-recoil bandwidth

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

This article provides a brief synopsis of our recent work on the interaction of Bose–Einstein condensates with the light field inside an optical cavity exhibiting a bandwidth on the order of the recoil frequency. Three different coupling scenarios are discussed giving rise to different physical phenomena at the borderline between the fields of quantum optics and many-body physics. This includes sub-recoil opto-mechanical cooling, cavity-controlled matter wave superradiance and the emergence of a superradiant superfluid or a superradiant Mott insulating many-body phase in a self-organized intra-cavity optical lattice with retarded infinite range interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J.M. Raimond, M. Brune, S. Haroche, Rev. Mod. Phys. 73, 565 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  2. H. Walther, B.T.H. Varcoe, B.-G. Englert, T. Becker, Rep. Prog. Phys. 69, 1325 (2006)

    Article  ADS  Google Scholar 

  3. T. Kippenberg, K. Vahala, Science 321, 1172 (2008)

    Article  ADS  Google Scholar 

  4. M. Aspelmayer, T.J. Kippenberg, F. Marquardt, arXiv:1303.0733v1 (2013)

  5. M.H. Devoret, R.J. Schoelkopf, Science 339, 1169 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  6. P. Lodahl, S. Mahmoodian, S. Stobbe, Rev. Mod. Phys. 87, 347 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  7. H. Ritsch, P. Domokos, F. Brennecke, T. Esslinger, Rev. Mod. Phys. 85, 553 (2013)

    Article  ADS  Google Scholar 

  8. D. Kruse et al., Phys. Rev. A 67, 051802(R) (2003)

    Article  ADS  Google Scholar 

  9. B. Nagorny et al., Phys. Rev. A 67, 031401(R) (2003)

    Article  ADS  Google Scholar 

  10. B. Nagorny et al., Phys. Rev. Lett. 91, 153003 (2003)

    Article  ADS  Google Scholar 

  11. Th Elsässer, B. Nagorny, A. Hemmerich, Phys. Rev. A 67, 051401(R) (2003)

    Article  ADS  Google Scholar 

  12. Th Elsässer, B. Nagorny, A. Hemmerich, Phys. Rev. A 69, 033403 (2004)

    Article  ADS  Google Scholar 

  13. S. Slama, S. Bux, G. Krenz, C. Zimmermann, Ph.W. Courteille, Phys. Rev. Lett. 98, 053603 (2007)

    Article  ADS  Google Scholar 

  14. E.M. Purcell, Phys. Rev. 69, 681 (1946)

    Article  Google Scholar 

  15. D. Kleppner, Phys. Rev. Lett. 47, 233–236 (1981)

    Article  ADS  Google Scholar 

  16. J. Klinner, M. Lindholdt, B. Nagorny, A. Hemmerich, Phys. Rev. Lett. 96, 023002 (2006)

    Article  ADS  Google Scholar 

  17. F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Köhl, T. Esslinger, Nature 450, 268 (2007)

    Article  ADS  Google Scholar 

  18. Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, J. Reichel, Nature 450, 272 (2007)

    Article  ADS  Google Scholar 

  19. F. Brennecke, S. Ritter, T. Donner, T. Esslinger, Science 322, 235 (2008)

    Article  ADS  Google Scholar 

  20. K.W. Murch, K.L. Moore, S. Gupta, D.M. Stamper-Kurn, Nat. Phys. 4, 561 (2008)

    Article  Google Scholar 

  21. R.H. Dicke, Phys. Rev. 93, 99 (1954)

    Article  ADS  Google Scholar 

  22. R.H. Dicke, in Proceedings of the Third International Congress on Quantum Electronics, ed. by P. Grivet, N. Bloembergen (Columbia Univ. Press, New York, 1964), pp. 35–54

  23. K. Hepp, E.H. Lieb, Ann. Phys. 76, 360 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  24. R. Gilmore, L.M. Narducci, Phys. Rev. A 17, 1747 (1978)

    Article  ADS  Google Scholar 

  25. D. Hansen, A. Hemmerich, Phys. Rev. Lett. 96, 073003 (2006)

    Article  ADS  Google Scholar 

  26. J. Klinner, M. Wolke, A. Hemmerich, Phys. Rev. A 81, 043414 (2010)

    Article  ADS  Google Scholar 

  27. R.M. Sandner, W. Niedenzu, H. Ritsch, EPL 104, 43001 (2013)

    Article  ADS  Google Scholar 

  28. M. Wolke, J. Klinner, H. Keßler, A. Hemmerich, Science 337, 85 (2012)

    Article  ADS  Google Scholar 

  29. H. Keßler, J. Klinder, M. Wolke, A. Hemmerich, New J. Phys. 16, 053008 (2014)

    Article  ADS  Google Scholar 

  30. F. Bloch, Z. Phys. 52, 555–600 (1929)

    Article  ADS  Google Scholar 

  31. C. Zener, Proc. R. Soc. Lond. A 145, 523–529 (1934)

    Article  ADS  Google Scholar 

  32. G. Ferrari, N. Poli, F. Sorrentino, G.M. Tino, Phys. Rev. Lett. 97, 060402 (2006)

    Article  ADS  Google Scholar 

  33. N. Poli, F.-Y. Wang, M.G. Tarallo, A. Alberti, M. Prevedelli, G.M. Tino, Phys. Rev. Lett. 106, 038501 (2011)

    Article  ADS  Google Scholar 

  34. M.G. Tarallo, A. Alberti, N. Poli, M.L. Chiofalo, F.-Y. Wang, G.M. Tino, Phys. Rev. A 86, 033615 (2012)

    Article  ADS  Google Scholar 

  35. H. Keßler, J. Klinder, B.P. Venkatesh, Ch. Georges, A. Hemmerich, New J. Phys. 18, 102001 (2016)

    Article  ADS  Google Scholar 

  36. D. Witthaut, M. Werder, S. Mossmann, H.J. Korsch, Phys. Rev. E 71, 036625 (2005)

    Article  ADS  Google Scholar 

  37. M. Gustavsson, E. Haller, M.J. Mark, J.G. Danzl, G. Rojas-Kopeinig, H.-C. Nägerl, Phys. Rev. Lett. 100, 080404 (2008)

    Article  ADS  Google Scholar 

  38. A.R. Kolovsky, H.J. Korsch, E.-M. Graefe, Phys. Rev. A 80, 023617 (2009)

    Article  ADS  Google Scholar 

  39. F. Meinert, M.J. Mark, E. Kirilov, K. Lauber, P. Weinmann, M. Gröbner, H.-C. Nägerl, Phys. Rev. Lett. 112, 193003 (2014)

    Article  ADS  Google Scholar 

  40. B.P. Venkatesh, D.H.J. O’Dell, J. Goldwin, Atoms 4, 2 (2016)

    Article  Google Scholar 

  41. T. Köhler, K. Góral, P.S. Julienne, Rev. Mod. Phys. 78, 1311–61 (2006)

    Article  ADS  Google Scholar 

  42. H. Keßler, J. Klinder, M. Wolke, A. Hemmerich, Phys. Rev. Lett. 113, 070404 (2014)

    Article  ADS  Google Scholar 

  43. S. Inouye et al., Science 285, 571–574 (1999)

    Article  Google Scholar 

  44. P. Domokos, H. Ritsch, Phys. Rev. Lett. 89, 253003 (2002)

    Article  ADS  Google Scholar 

  45. A.T. Black, H.W. Chan, V. Vuletic, Phys. Rev. Lett. 91, 203001 (2003)

    Article  ADS  Google Scholar 

  46. K. Baumann, C. Guerlin, F. Brennecke, T. Esslinger, Nature 464, 1301 (2010)

    Article  ADS  Google Scholar 

  47. D. Nagy, G. Konya, G. Szirmai, P. Domokos, Phys. Rev. Lett. 104, 130401 (2010)

    Article  ADS  Google Scholar 

  48. M.J. Bhaseen, J. Mayoh, B.D. Simons, J. Keeling, Phys. Rev. A 85, 013817 (2012)

    Article  ADS  Google Scholar 

  49. V.M. Bastidas, C. Emary, B. Regler, T. Brandes, Phys. Rev. Lett. 108, 043003 (2012)

    Article  ADS  Google Scholar 

  50. J. Klinder, H. Keßler, M. Wolke, L. Mathey, A. Hemmerich, Proc. Natl. Acad. Sci. USA 112, 3290 (2015)

    Article  ADS  Google Scholar 

  51. T.W.B. Kibble, J. Phys. A 9, 1387–1398 (1976)

    Article  ADS  Google Scholar 

  52. W.H. Zurek, Nature 317, 505–508 (1985)

    Article  ADS  Google Scholar 

  53. A. del Campo, W. Zurek, Int. J. Mod. Phys. A 29, 1430018 (2014)

    Article  Google Scholar 

  54. L.M. Sieberer, S.D. Huber, E. Altman, S. Diehl, Phys. Rev. Lett. 110, 195301 (2013)

    Article  ADS  Google Scholar 

  55. Y. Li, L. He, W. Hofstetter, Phys. Rev. A 87, 051604 (2013)

    Article  ADS  Google Scholar 

  56. M.R. Bakhtiari, A. Hemmerich, H. Ritsch, M. Thorwart, Phys. Rev. Lett. 114, 123601 (2015)

    Article  ADS  Google Scholar 

  57. M. Lewenstein et al., Adv. Phys. 56, 243–379 (2007)

    Article  ADS  Google Scholar 

  58. J. Klinder, H. Keßler, M. Reza Bakhtiari, M. Thorwart, A. Hemmerich, Phys. Rev. Lett. 115, 230403 (2015)

    Article  ADS  Google Scholar 

  59. R. Landig, L. Hruby, N. Dogra, M. Landini, R. Mottl, T. Donner, T. Esslinger, Nature 532, 476–479 (2016)

    Article  ADS  Google Scholar 

  60. I.B. Mekhov, Ch. Maschler, H. Ritsch, Phys. Rev. Lett. 98, 100402 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

It is a pleasure to acknowledge invaluable theory support by Reza Bakthiari, Michael Thorwart, Ludwig Mathey and Prasanna Venkatesh. This work was partially supported by DFG-SFB 925 and the Hamburg Centre of Ultrafast Imaging (CUI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hemmerich.

Additional information

This article is part of the topical collection “Enlightening the World with the Laser” - Honoring T. W. Hänsch guest edited by Tilman Esslinger, Nathalie Picqué, and Thomas Udem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klinder, J., Keßler, H., Georges, C. et al. Bose–Einstein condensates in an optical cavity with sub-recoil bandwidth. Appl. Phys. B 122, 299 (2016). https://doi.org/10.1007/s00340-016-6577-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6577-7

Keywords

Navigation