Skip to main content
Log in

Design and analysis of tunable multichannel transmission filters with a binary photonic crystal of silver/silicon

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The present article is based on the analysis of multichannel transmission behavior of a 1D binary PC composed of silver/silicon. By using the transfer matrix method, the transmission spectra are plotted in various cases. PC exhibits a better response for multichannel transmission behavior with respect to sharpness in the case of TE mode compared to TM mode. With an increase in the thickness of layer B, the shifting in the transmission peaks is toward a low-frequency region contrary to the results in the case of increasing the thickness of layer A. Although the transmission peaks are equally spaced for fixed parameters, it shows multichannel filtering characteristics. Furthermore, PC gives better results for multichannel transmission behavior at low plasma frequency with less broadening. Finally, we demonstrate that the PC offers multichannel transmittance characteristics with increased number of unit cells, in which transmission peaks at low frequency are closely spaced as compared to those at higher frequencies. Hence, owing to diverse behavior of multichannel transmission of the PC in different cases, the insights of the article offer novel ideas to design optical devices, such as a multichannel filters, multispectral imaging and wavelength-division multiplexing systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

No data associated in the manuscript.

References

  1. E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059 (1987)

    Article  Google Scholar 

  2. S. John, Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486 (1987)

    Article  Google Scholar 

  3. S.P. Ojha, S.K. Srivastava, N. Kumar, S.K. Srivastava, Design of an optical filter using photonic band gap material. Optik 114, 101–105 (2003). https://doi.org/10.1078/0030-4026-00234

    Article  Google Scholar 

  4. B. Suthar, A. Bhargava, Temperature-dependent tunable photonic channel filter. IEEE Photon. Tech. Lett. 24(5), 338–340 (2012)

    Article  Google Scholar 

  5. N. Kumar, J. Saraf, Tunable reflectance characteristics of magnetized cold plasma based one-dimensional defective photonic crystal. Optik 252, 168577 (2022)

    Article  Google Scholar 

  6. B. Suthar, A. Bhargava, Optical properties of plasma photonic crystals. SILICON 7(4), 433–435 (2015)

    Article  Google Scholar 

  7. G.N. Pandey, B. Suthar, Transmittance properties of superconductor-dielectric photonic crystal. Mater. Today Proc. 49, 3214–3216 (2022)

    Article  Google Scholar 

  8. K.B. Thapa, S. Srivastava, S. Tiwai, Enlarged photonic band gap in heterostructure of metallic photonic and superconducting photonic crystals. J. Supercond. Nov. Magn. 23, 517 (2010)

    Article  Google Scholar 

  9. B. Suthar, Tuning of guided mode in two dimensional chalcogenide based photonic crystal waveguide. Optik 126(22), 3429–3431 (2015)

    Article  Google Scholar 

  10. S.W. Leonard, J.P. Mondia, H.M. Van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, V. Lehmann, Tunable two-dimensional photonic crystals using liquid-crystal infiltration. Phys. Rev. B 61, R2389 (2000)

    Article  Google Scholar 

  11. A. Kumar, V. Kumar, B. Suthar, K.S. Singh, Ojha SP: Nonlinear transmission and reflection characteristics of plasma/polystyrene one dimensional photonic crystal. Optik 125(1), 393–396 (2014)

    Article  Google Scholar 

  12. N. Kumar, B. Suthar, A. Rostami, Novel optical behaviors of metamaterial and polymer-based ternary photonic crystal with lossless and lossy features. Opt. Commun. 529, 129073 (2022)

    Article  Google Scholar 

  13. Z. Li, Z. Ge, X.Y. Zhang, Z.Y. Hu, D. Zhao, Z.W. Wu, Analysis of photonic band gaps in metamaterial-based one-dimensional ternary photonic crystals. Indian J. Phys. 93, 511–521 (2019). https://doi.org/10.1007/s12648-018-1320-3

    Article  Google Scholar 

  14. N.R. Ramanujam, K.S.J. Wilson, P. Mahalakshmi, S.A. Taya, Analysis of photonic band gap in photonic crystal with epsilon negative and double negative materials. Optik 183, 203–210 (2019). https://doi.org/10.1016/j.ijleo.2019.02.066

    Article  Google Scholar 

  15. F. Wu, K. Lyu, S. Hu, M. Yao, S. Xiao, Ultra-large omnidirectional photonic band gaps in one-dimensional ternary photonic crystals composed of plasma, dielectric and hyperbolic metamaterial. Opt. Mater. 111, 110680 (2021)

    Article  Google Scholar 

  16. N. Kumar, S. Kaliramna, M. Singh, Design of cold plasma based ternary photonic crystal for microwave applications. Silicon (2021). https://doi.org/10.1007/s12633-021-01405-9

    Article  Google Scholar 

  17. C. Chen, J. Lei, Z. Liu, A ternary seismic metamaterial for low frequency vibration attenuation. Materials 15, 1246 (2022)

    Article  Google Scholar 

  18. N. Kumar, B. Suthar (eds.), Advances in Photonic Crystals and Devices (CRC Press, USA, 2019)

    Google Scholar 

  19. W. Belhadj, A.N. Al-Ahmadi, Tunable narrowband terahertz multichannel filter based on one-dimensional graphene-dielectric photonic crystal. Opt. Quant. Electron. 53, 27 (2021). https://doi.org/10.1007/s11082-020-02642-9

    Article  Google Scholar 

  20. C.-J. Wu, M.-H. Lee, J.-Z. Jian, Design and analysis of multichannel transmission filter based on the single-negative photonic crystal. Progr. Electromag. Res. 136, 561–578 (2013). https://doi.org/10.2528/PIER12122202

    Article  Google Scholar 

  21. B. Kuiri, B. Dutta, N. Sarkar, S. Santra, P. Mandal, K. Mallick, A.S. Patra, Design and optimization of photonic crystal fiber with low confinement loss guiding 98 OAM modes in THz band. Opt. Fiber Technol. 68, 102752 (2022). https://doi.org/10.1016/j.yofte.2021.102752

    Article  Google Scholar 

  22. B. Kuiri, B. Dutta, N. Sarkar, S. Santra, P. Mandal, K. Mallick, A.S. Patra, Ultra-low loss polymer-based photonic crystal fiber supporting 242 OAM modes with high bending tolerance for multimode THz communication. Res. Phys. 36, 105465 (2022). https://doi.org/10.1016/j.rinp.2022.105465

    Article  Google Scholar 

  23. B. Kuiri, B. Dutta, N. Sarkar, S. Santra, R. Atta, A.S. Patra, Development of photonic crystal fiber supporting 124 OAM modes with flat dispersion and low confinement loss. Opt. Quant. Electron. 54, 1–7 (2022). https://doi.org/10.1007/s11082-022-03942-y

    Article  Google Scholar 

  24. J.J. Singh, D. Dhawan, N. Gupta, All-optical photonic crystal logic gates for optical computing: an extensive review. Opt. Eng. 59, 110901 (2020)

    Google Scholar 

  25. A. Kumar, N. Kumar, K.B. Thapa, Tunable broadband reflector and narrowband filter for a dielectric and magnetized cold plasma photonic crystal. The Eur. Phys. J. Plus 133–250, 1–8 (2018). https://doi.org/10.1140/epjp/i2018-12073-3

    Article  Google Scholar 

  26. S.B. Ankita, B. Suthar, A. Bhargava, Graded photonic crystal as improved sensor for nanobiophotonic application. Macromol. Symp. 401(1), 2100319 (2022)

    Article  Google Scholar 

  27. N.H. Priya, S. Swarnakar, S.V. Krishna et al., Design and analysis of a photonic crystal-based all-optical 3-input OR gate for high-speed optical processing. Opt. Quant. Electron. 53, 720 (2021). https://doi.org/10.1007/s11082-021-03374-0

    Article  Google Scholar 

  28. M. Radhouene, M. Najjar, M.K. Chhipa, S. Robinson, B. Suthar, Design and analysis a thermo-optic switch based on photonic crystal ring resonator. Optik 172, 924–929 (2018)

    Article  Google Scholar 

  29. Z. Gharsallah, M. Najjar, B. Suthar, V. Janyani, High sensitivity and ultra-compact optical biosensor for detection of UREA concentration. Opt. Quant. Electron. 50(6), 1–10 (2018)

    Article  Google Scholar 

  30. S.B. Ankita, B. Suthar, A. Bhargava, Optical sensor for biomedical application based on photonic crystal with double defect. Mater. Today Proc. (2022). https://doi.org/10.1016/j.matpr.2022.03.616

    Article  Google Scholar 

  31. V. Kumar, B. Suthar, A. Kumar, K.S. Singh, A. Bhargava, S.P. Ojha, Silicon based one-dimensional photonic crystal as a TM-mode filter. SILICON 6(1), 73–78 (2014)

    Article  Google Scholar 

  32. M.K. Chhipa, B.T.P. Madhav, S. Robinson, V. Janyani, B. Suthar, Realization of all-optical logic gates using a single design of 2D photonic band gap structure by square ring resonator. Opt. Eng. 60(7), 075104 (2021)

    Article  Google Scholar 

  33. M.K. Chhipa, M. Radhouene, A. Dikshit, S. Robinson, B. Suthar, Novel compact optical channel drop filter for CWDM optical network applications. Int. J. Photonics Opt. Technol 2(4), 26–29 (2016)

    Google Scholar 

  34. U. Biswas, J.K. Rakshit, J. Das, G.K. Bharti, B. Suthar, A. Amphawan, M. Najjar, Design of an ultra-compact and highly-sensitive temperature sensor using photonic crystal based single micro-ring resonator and cascaded micro-ring resonator. SILICON 13(3), 885–892 (2021)

    Article  Google Scholar 

  35. Y. Pochi, Optical Waves in Layered Media (Wiley, London, 2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narendra Kumar.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suthar, B., Kumar, N. & Taya, S.A. Design and analysis of tunable multichannel transmission filters with a binary photonic crystal of silver/silicon. Eur. Phys. J. Plus 137, 1301 (2022). https://doi.org/10.1140/epjp/s13360-022-03533-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03533-6

Navigation