Skip to main content
Log in

Quasinormal modes for a non-minimally coupled scalar field in a five-dimensional Einstein–Power–Maxwell background

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We study the propagation of massless scalar fields non-minimally coupled to gravity in the background of five-dimensional Einstein–Power–Maxwell black holes, and using the WKB and the pseudospectral Chebyshev methods, we obtain the quasinormal frequencies (QNFs), which allow us to show the existence of stable and unstable QNFs depending on the power k of the nonlinear electrodynamics, the \(\xi\) parameter, which controls the strength of the non-minimal coupling, and on the size of the black hole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

We do not have any additional data to present. All the numerical results are summarized in several tables in the manuscript.

References

  1. R.A. Konoplya, A. Zhidenko, Quasinormal modes of black holes: From astrophysics to string theory. Rev. Mod. Phys. 83, 793 (2011). [arXiv:1102.4014 [gr-qc]]

    Article  ADS  Google Scholar 

  2. T. Regge, J.A. Wheeler, Stability of a Schwarzschild singularity. Phys. Rev. 108, 1063 (1957)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  3. F.J. Zerilli, Gravitational field of a particle falling in a Schwarzschild geometry analyzed in tensor harmonics. Phys. Rev. D 2, 2141 (1970)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  4. K.D. Kokkotas, B.G. Schmidt, Quasi-normal modes of stars and black holes. Living Rev. Rel. 2, 2 (1999). [arXiv:gr-qc/9909058]

    Article  MathSciNet  MATH  Google Scholar 

  5. H.P. Nollert, Topical review: Quasinormal modes: The characteristic ‘sound’ of black holes and neutron stars. Class. Quantum Gravity 16, R159 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. E. Berti, V. Cardoso, A.O. Starinets, Quasinormal modes of black holes and black branes. Class. Quantum Gravity 26, 163001 (2009). [arXiv:0905.2975 [gr-qc]]

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. B.P. Abbott et al. [LIGO Scientific and Virgo Collaborations], Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116(6), 061102 (2016)

  8. B.P. Abbott et al. [LIGO Scientific and Virgo Collaborations], Tests of general relativity with GW150914. Phys. Rev. Lett. 116(22), 221101 (2016)

  9. R. Konoplya, A. Zhidenko, Detection of gravitational waves from black holes: Is there a window for alternative theories? Phys. Lett. B 756, 350 (2016)

    Article  MATH  ADS  Google Scholar 

  10. G. Poschl, E. Teller, Bemerkungen zur Quantenmechanik des anharmonischen Oszillators. Z. Phys. 83, 143 (1933)

    Article  MATH  ADS  Google Scholar 

  11. V. Ferrari, B. Mashhoon, New approach to the quasinormal modes of a black hole. Phys. Rev. D 30, 295 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  12. V. Cardoso, J.P.S. Lemos, Scalar, electromagnetic and Weyl perturbations of BTZ black holes: Quasinormal modes. Phys. Rev. D 63, 124015 (2001). [arXiv:gr-qc/0101052]

    Article  MathSciNet  ADS  Google Scholar 

  13. V. Cardoso, J.P.S. Lemos, Quasinormal modes of the near extremal Schwarzschild–de Sitter black hole. Phys. Rev. D 67, 084020 (2003). https://doi.org/10.1103/PhysRevD.67.084020. [arXiv:gr-qc/0301078]

    Article  MathSciNet  ADS  Google Scholar 

  14. C. Molina, Quasinormal modes of d-dimensional spherical black holes with near extreme cosmological constant. Phys. Rev. D 68, 064007 (2003). [arXiv:gr-qc/0304053]

    Article  MathSciNet  ADS  Google Scholar 

  15. G. Panotopoulos, Electromagnetic quasinormal modes of the nearly-extremal higher-dimensional Schwarzschild–de Sitter black hole. Mod. Phys. Lett. A 33(23), 1850130 (2018). [arXiv:1807.03278 [gr-qc]]

    Article  MathSciNet  ADS  Google Scholar 

  16. D. Birmingham, Choptuik scaling and quasinormal modes in the AdS/CFT correspondence. Phys. Rev. D 64, 064024 (2001). [arXiv:hep-th/0101194]

    Article  MathSciNet  ADS  Google Scholar 

  17. S. Fernando, Quasinormal modes of charged dilaton black holes in (\(2+1\))-dimensions. Gen. Rel. Grav. 36, 71 (2004). [arXiv:hep-th/0306214]

    Article  MathSciNet  MATH  ADS  Google Scholar 

  18. S. Fernando, Quasinormal modes of charged scalars around dilaton black holes in \(2+1\) dimensions: Exact frequencies. Phys. Rev. D 77, 124005 (2008). [arXiv:0802.3321 [hep-th]]

    Article  MathSciNet  ADS  Google Scholar 

  19. P. Gonzalez, E. Papantonopoulos, J. Saavedra, Chern–Simons black holes: scalar perturbations, mass and area spectrum and greybody factors. JHEP 08, 050 (2010). [arXiv:1003.1381 [hep-th]]

    Article  MathSciNet  MATH  ADS  Google Scholar 

  20. K. Destounis, G. Panotopoulos , Á. Rincón, Stability under scalar perturbations and quasinormal modes of 4D Einstein–Born–Infeld dilaton spacetime: Exact spectrum. Eur. Phys. J. C 78(2), 139 (2018). [arXiv:1801.08955 [gr-qc]]

  21. A. Ovgün, K. Jusufi, Quasinormal modes and greybody factors of \(f(R)\) gravity minimally coupled to a cloud of strings in \(2+1\) dimensions. Annals Phys. 395, 138 (2018). [arXiv:1801.02555 [gr-qc]]

    Article  MathSciNet  MATH  ADS  Google Scholar 

  22. Á. Rincón , G. Panotopoulos, Greybody factors and quasinormal modes for a nonminimally coupled scalar field in a cloud of strings in (\(2+1\))-dimensional background. Eur. Phys. J. C 78(10), 858 (2018). [arXiv:1810.08822 [gr-qc]]

  23. T. Kaluza, On the problem of unity in physics. Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1921, 966 (1921)

  24. O. Klein, Quantum theory and five-dimensional theory of relativity. (In German and English). Z. Phys. 37, 895 (1926)

  25. O. Klein, Surveys High Energ. Phys. 5, 241 (1986)

    Article  ADS  Google Scholar 

  26. H.P. Nilles, Supersymmetry, supergravity and particle physics. Phys. Rept. 110, 1 (1984)

    Article  ADS  Google Scholar 

  27. M.B. Green, J.H. Schwarz, E. Witten, Superstring Theory, Cambridge Monographs on Mathematical Physics, vol. 1 & 2. (Cambridge University Press, Cambridge, 2012)

    Book  MATH  Google Scholar 

  28. J. Polchinski, String Theory, Cambridge Monographs on Mathematical Physics, vol. 1 & 2. (Cambridge University Press, Cambridge, 2005)

    MATH  Google Scholar 

  29. M.K. Zangeneh, A. Sheykhi, M.H. Dehghani, Thermodynamics of higher dimensional topological dilation black holes with a power-law Maxwell field. Phys. Rev. D 91(4), 044035 (2015). [arXiv:1505.01103 [gr-qc]]

    Article  MathSciNet  ADS  Google Scholar 

  30. S.. H.. Hendi, M.. H.. Vahidinia, Extended phase space thermodynamics and P-V criticality of black holes with a nonlinear source. Phys. Rev. D 88(8), 084045 (2013). [arXiv:1212.6128 [hep-th]]

    Article  ADS  Google Scholar 

  31. B.F. Schutz, C.M. Will, Black hole normal modes: A semianalytic approach. Astrophys. J. 291, L33 (1985)

    Article  ADS  Google Scholar 

  32. S.. Iyer, C.. M.. Will, Black hole normal modes: A WKB approach. 1. Foundations and application of a higher order WKB analysis of potential barrier scattering. Phys. Rev. D 35, 3621 (1987)

    Article  ADS  Google Scholar 

  33. R.A. Konoplya, Quasinormal behavior of the d-dimensional Schwarzschild black hole and higher order WKB approach. Phys. Rev. D 68, 024018 (2003). [arXiv:gr-qc/0303052]

    Article  MathSciNet  ADS  Google Scholar 

  34. S. Iyer, Black hole normal modes: A Wkb approach. 2. Schwarzschild black holes. Phys. Rev. D 35, 3632 (1987)

    Article  ADS  Google Scholar 

  35. K.D. Kokkotas, B.F. Schutz, Black hole normal modes: A WKB approach. 3. The Reissner–Nordstrom black hole. Phys. Rev. D 37, 3378 (1988)

    Article  ADS  Google Scholar 

  36. E. Seidel, S. Iyer, Black hole normal modes: A Wkb approach. 4. Kerr black holes. Phys. Rev. D 41, 374 (1990)

    Article  ADS  Google Scholar 

  37. R. Konoplya, Quasinormal modes of the charged black hole in Gauss–Bonnet gravity. Phys. Rev. D 71, 024038 (2005). [arXiv:hep-th/0410057]

    Article  MathSciNet  ADS  Google Scholar 

  38. S. Fernando, C. Holbrook, Stability and quasi normal modes of charged black holes in Born–Infeld gravity. Int. J. Theor. Phys. 45, 1630 (2006). [arXiv:hep-th/0501138]

    Article  MATH  Google Scholar 

  39. S.K. Chakrabarti, Quasinormal modes of tensor and vector type perturbation of Gauss Bonnet black hole using third order WKB approach. Gen. Rel. Gravit. 39, 567 (2007). [arXiv:hep-th/0603123]

    Article  MathSciNet  MATH  ADS  Google Scholar 

  40. S. Fernando, J. Correa, Quasinormal modes of Bardeen black hole: Scalar perturbations. Phys. Rev. D 86, 064039 (2012). [arXiv:1208.5442 [gr-qc]]

    Article  ADS  Google Scholar 

  41. V. Santos, R.V. Maluf, C.A.S. Almeida, Quasinormal frequencies of self-dual black holes. Phys. Rev. D 93(8), 084047 (2016). [arXiv:1509.04306 [gr-qc]]

    Article  ADS  Google Scholar 

  42. J.L. Blázquez-Salcedo, F.S. Khoo , J. Kunz, Quasinormal modes of Einstein–Gauss–Bonnet-dilaton black holes. arXiv:1706.03262 [gr-qc]

  43. G. Panotopoulos, Á. Rincón, Quasinormal modes of black holes in Einstein-power-Maxwell theory. Int. J. Mod. Phys. D 27(03), 1850034 (2017). [arXiv:1711.04146 [hep-th]]

    Article  MathSciNet  ADS  Google Scholar 

  44. Á. Rincón, G. Panotopoulos, Quasinormal modes of scale dependent black holes in (\(1+2\))-dimensional Einstein-power-Maxwell theory. Phys. Rev. D 97(2), 024027 (2018). [arXiv:1801.03248 [hep-th]]

    Article  MathSciNet  ADS  Google Scholar 

  45. G. Panotopoulos, Á. Rincón, Quasinormal spectra of scale-dependent Schwarzschild–de Sitter black holes. Phys. Dark Univ. 31, 100743 (2021). [arXiv:2011.02860 [gr-qc]]

    Article  Google Scholar 

  46. Á. Rincón, V. Santos, Greybody factor and quasinormal modes of regular black holes. Eur. Phys. J. C 80(10), 910 (2020). [arXiv:2009.04386 [gr-qc]]

    Article  ADS  Google Scholar 

  47. A. Rincon, G. Panotopoulos, Quasinormal modes of black holes with a scalar hair in Einstein–Maxwell-dilaton theory. Phys. Scripta 95(8), 085303 (2020). [arXiv:2007.01717 [gr-qc]]

    Article  ADS  Google Scholar 

  48. Á. Rincón, G. Panotopoulos, Quasinormal modes of an improved Schwarzschild black hole. Phys. Dark Univ. 30, 100639 (2020). [arXiv:2006.11889 [gr-qc]]

    Article  Google Scholar 

  49. G. Panotopoulos, Á. Rincón, Quasinormal modes of five-dimensional black holes in non-commutative geometry. Eur. Phys. J. Plus 135(1), 33 (2020). [arXiv:1910.08538 [gr-qc]]

    Article  Google Scholar 

  50. G. Panotopoulos, Á. Rincón, Quasinormal modes of regular black holes with non linear-Electrodynamical sources. Eur. Phys. J. Plus 134(6), 300 (2019). [arXiv:1904.10847 [gr-qc]]

    Article  Google Scholar 

  51. J.P. Boyd, Chebyshev and Fourier Spectral Methods, 2nd edn. (Dover Books on Mathematics. Dover Publications, Mineola, 2001)

    MATH  Google Scholar 

  52. S.I. Finazzo, R. Rougemont, M. Zaniboni, R. Critelli, J. Noronha, Critical behavior of non-hydrodynamic quasinormal modes in a strongly coupled plasma. JHEP 1701, 137 (2017). [arXiv:1610.01519 [hep-th]]

    Article  MathSciNet  MATH  ADS  Google Scholar 

  53. P.A. González, E. Papantonopoulos, J. Saavedra, Y. Vásquez, Superradiant instability of near extremal and extremal four-dimensional charged hairy black hole in anti-de Sitter spacetime. Phys. Rev. D 95(6), 064046 (2017). [arXiv:1702.00439 [gr-qc]]

    Article  ADS  Google Scholar 

  54. P.A. Gonzalez, Y. Vasquez, R.N. Villalobos, Perturbative and nonperturbative fermionic quasinormal modes of Einstein–Gauss–Bonnet-AdS black holes. Phys. Rev. D 98(6), 064030 (2018). [arXiv:1807.11827 [gr-qc]]

    Article  MathSciNet  ADS  Google Scholar 

  55. R. Bécar, P.A. González, E. Papantonopoulos, Y. Vásquez, Quasinormal modes of three-dimensional rotating Ho\({\check{r}}\)ava AdS black hole and the approach to thermal equilibrium. Eur. Phys. J. C 80(7), 600 (2020). [arXiv:1906.06654 [gr-qc]]

    Article  ADS  Google Scholar 

  56. A. Aragón, R. Bécar, P.A. González, Y. Vásquez, Perturbative and nonperturbative quasinormal modes of 4D Einstein–Gauss–Bonnet black holes. Eur. Phys. J. C 80(8), 773 (2020). [arXiv:2004.05632 [gr-qc]]

    Article  ADS  Google Scholar 

  57. A. Aragón, P.A. González, E. Papantonopoulos, Y. Vásquez, Anomalous decay rate of quasinormal modes in Schwarzschild-dS and Schwarzschild-AdS black holes. JHEP 08, 120 (2020). [arXiv:2004.09386 [gr-qc]]

    Article  MathSciNet  MATH  ADS  Google Scholar 

  58. A. Aragón, P.A. González, E. Papantonopoulos, Y. Vásquez, Quasinormal modes and their anomalous behavior for black holes in \(f(R)\) gravity. Eur. Phys. J. C 81(5), 407 (2021). [arXiv:2005.11179 [gr-qc]]

    Article  ADS  Google Scholar 

  59. A. Aragón, R. Bécar, P.A. González, Y. Vásquez, Massive Dirac quasinormal modes in Schwarzschild–de Sitter black holes: Anomalous decay rate and fine structure. Phys. Rev. D 103(6), 064006 (2021). [arXiv:2009.09436 [gr-qc]]

    Article  MathSciNet  ADS  Google Scholar 

  60. R.D.B. Fontana, P.A. González, E. Papantonopoulos, Y. Vásquez, Anomalous decay rate of quasinormal modes in Reissner–Nordström black holes. Phys. Rev. D 103(6), 064005 (2021). [arXiv:2011.10620 [gr-qc]]

    Article  ADS  Google Scholar 

  61. E. Ayon-Beato, A. Garcia, Regular black hole in general relativity coupled to nonlinear electrodynamics. Phys. Rev. Lett. 80, 5056 (1998). [arXiv:gr-qc/9911046]

    Article  ADS  Google Scholar 

  62. E. Ayon-Beato, A. Garcia, New regular black hole solution from nonlinear electrodynamics. Phys. Lett. B 464, 25 (1999). [arXiv:hep-th/9911174]

    Article  MathSciNet  MATH  ADS  Google Scholar 

  63. M. Cataldo, A. Garcia, Regular (\(2+1\))-dimensional black holes within nonlinear electrodynamics. Phys. Rev. D 61, 084003 (2000). [arXiv:hep-th/0004177]

    Article  MathSciNet  ADS  Google Scholar 

  64. K.A. Bronnikov, Regular magnetic black holes and monopoles from nonlinear electrodynamics. Phys. Rev. D 63, 044005 (2001). [arXiv:gr-qc/0006014]

    Article  MathSciNet  ADS  Google Scholar 

  65. A. Burinskii, S.R. Hildebrandt, New type of regular black holes and particle—like solutions from NED. Phys. Rev. D 65, 104017 (2002). [arXiv:hep-th/0202066]

    Article  MathSciNet  ADS  Google Scholar 

  66. J. Matyjasek, Extremal limit of the regular charged black holes in nonlinear electrodynamics. Phys. Rev. D 70, 047504 (2004). [arXiv:gr-qc/0403109]

    Article  MathSciNet  ADS  Google Scholar 

  67. J. Bardeen, presented at GR5 (U.S.S.R., and published in the conference proceedings in the U.S.S.R, Tiflis, 1968)

  68. S.. H.. Hendi, A. Sheykhi, S. Panahiyan, B. Eslam Panah, Phase transition and thermodynamic geometry of Einstein–Maxwell-dilaton black holes. Phys. Rev. D 92(6), 064028 (2015). [arXiv:1509.08593 [hep-th]]

    Article  MathSciNet  ADS  Google Scholar 

  69. M.. H.. Dehghani, S.. H.. Hendi, A.. Sheykhi, H.. Rastegar Sedehi, Thermodynamics of rotating black branes in (\(n+1\))-dimensional Einstein–Born–Infeld-dilaton gravity. JCAP 0702, 020 (2007). [arXiv:hep-th/0611288]

    Article  ADS  Google Scholar 

  70. M. Hassaine, C. Martinez, Higher-dimensional charged black holes solutions with a nonlinear electrodynamics source. Class. Quantum Gravity 25, 195023 (2008). [arXiv:0803.2946 [hep-th]]

    Article  MathSciNet  MATH  ADS  Google Scholar 

  71. G. Panotopoulos, Á. Rincón, Charged slowly rotating toroidal black holes in the (\(1+3\))-dimensional Einstein-power-Maxwell theory. Int. J. Mod. Phys. D 28(01), 1950016 (2018). [arXiv:1808.05171 [gr-qc]]

    Article  MathSciNet  MATH  ADS  Google Scholar 

  72. Á. Rincón, E. Contreras, P. Bargueño, B. Koch, G. Panotopoulos, Scale-dependent (\(2+1\))-dimensional electrically charged black holes in Einstein-power-Maxwell theory. Eur. Phys. J. C 78(8), 641 (2018). [arXiv:1807.08047 [hep-th]]

    Article  ADS  Google Scholar 

  73. Á. Rincón, E. Contreras, P. Bargueño, B. Koch, G. Panotopoulos, Four dimensional Einstein-power-Maxwell black hole solutions in scale-dependent gravity. Phys. Dark Univ. 31, 100783 (2021). [arXiv:2102.02426 [gr-qc]]

    Article  Google Scholar 

  74. K. Zhou, Z.Y. Yang, D.C. Zou, R.H. Yue, Static spherically symmetric star in Gauss–Bonnet gravity. Chin. Phys. B 21, 020401 (2012). [arXiv:1107.2732 [gr-qc]]

    Article  ADS  Google Scholar 

  75. S. Hansraj, B. Chilambwe, S.D. Maharaj, Exact EGB models for spherical static perfect fluids. Eur. Phys. J. C 75(6), 277 (2015). [arXiv:1502.02219 [gr-qc]]

    Article  MATH  ADS  Google Scholar 

  76. H. Reissner, Ann. Phys. 355, 106–120 (1916)

    Article  Google Scholar 

  77. F.R. Tangherlini, Schwarzschild field in n dimensions and the dimensionality of space problem. Nuovo Cim. 27, 636 (1963)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  78. H.A. Gonzalez, M. Hassaine, C. Martinez, Thermodynamics of charged black holes with a nonlinear electrodynamics source. Phys. Rev. D 80, 104008 (2009). [arXiv:0909.1365 [hep-th]]

    Article  ADS  Google Scholar 

  79. L.C.B. Crispino, A. Higuchi, E.S. Oliveira, J.V. Rocha, Greybody factors for nonminimally coupled scalar fields in Schwarzschild–de Sitter spacetime. Phys. Rev. D 87, 104034 (2013). [arXiv:1304.0467 [gr-qc]]

    Article  ADS  Google Scholar 

  80. P. Kanti, T. Pappas, N. Pappas, Greybody factors for scalar fields emitted by a higher-dimensional Schwarzschild–de Sitter black hole. Phys. Rev. D 90(12), 124077 (2014). [arXiv:1409.8664 [hep-th]]

    Article  ADS  Google Scholar 

  81. T. Pappas, P. Kanti, N. Pappas, Hawking radiation spectra for scalar fields by a higher-dimensional Schwarzschild–de Sitter black hole. Phys. Rev. D 94(2), 024035 (2016). [arXiv:1604.08617 [hep-th]]

    Article  MathSciNet  ADS  Google Scholar 

  82. C. Muller, Lecture Notes in Mathematics: Spherical Harmonics (Springer, Berlin, 1966)

    Book  Google Scholar 

  83. T. Harmark, J. Natario, R. Schiappa, Greybody factors for d-dimensional black holes. Adv. Theor. Math. Phys. 14(3), 727 (2010). [arXiv:0708.0017 [hep-th]]

    Article  MathSciNet  MATH  Google Scholar 

  84. http://www.wolfram.com

  85. R.A. Konoplya, A. Zhidenko, Passage of radiation through wormholes of arbitrary shape. Phys. Rev. D 81, 124036 (2010). [arXiv:1004.1284 [hep-th]]

    Article  ADS  Google Scholar 

  86. J.. Matyjasek, M. Opala, Quasinormal modes of black holes. The improved semianalytic approach. Phys. Rev. D 96(2), 024011 (2017). [arXiv:1704.00361 [gr-qc]]

    Article  ADS  Google Scholar 

  87. R.A. Konoplya, A. Zhidenko, A.F. Zinhailo, Higher order WKB formula for quasinormal modes and grey-body factors: Recipes for quick and accurate calculations. Class. Quantum Gravity 36, 155002 (2019). [arXiv:1904.10333 [gr-qc]]

    Article  MathSciNet  MATH  ADS  Google Scholar 

  88. Y. Hatsuda Quasinormal modes of black holes and Borel summation. arXiv:1906.07232 [gr-qc]

  89. J. Grain, A. Barrau, Quantum bound states around black holes. Eur. Phys. J. C 53, 641–648 (2008). [arXiv:hep-th/0701265 [hep-th]]

    Article  MathSciNet  MATH  ADS  Google Scholar 

  90. K.A. Bronnikov, R.A. Konoplya, A. Zhidenko, Instabilities of wormholes and regular black holes supported by a phantom scalar field. Phys. Rev. D 86, 024028 (2012). [arXiv:1205.2224 [gr-qc]]

    Article  ADS  Google Scholar 

  91. P. Liu, C. Niu, C.Y. Zhang, Instability of regularized 4D charged Einstein–Gauss–Bonnet de-Sitter black holes. Chin. Phys. C 45(2), 025104 (2021). [arXiv:2004.10620 [gr-qc]]

    Article  ADS  Google Scholar 

  92. P.A. González, E. Papantonopoulos, J. Saavedra , Y. Vásquez, Quasinormal modes for massive charged scalar fields in Reissner–Nordström dS black holes: Anomalous decay rate. [arXiv:2204.01570 [gr-qc]]

  93. V. Cardoso, J.L. Costa, K. Destounis, P. Hintz, A. Jansen, Quasinormal modes and strong cosmic censorship. Phys. Rev. Lett. 120(3), 031103 (2018). [arXiv:1711.10502 [gr-qc]]

    Article  ADS  Google Scholar 

  94. M. Richartz, D. Giugno, Quasinormal modes of charged fields around a Reissner–Nordström black hole. Phys. Rev. D 90(12), 124011 (2014). [arXiv:1409.7440 [gr-qc]]

    Article  ADS  Google Scholar 

  95. M. Richartz, Quasinormal modes of extremal black holes. Phys. Rev. D 93(6), 064062 (2016). [arXiv:1509.04260 [gr-qc]]

    Article  MathSciNet  ADS  Google Scholar 

  96. G. Panotopoulos, Charged scalar fields around Einstein-power-Maxwell black holes. Gen. Relativ. Gravit. 51(6), 76 (2019)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  97. E. Berti, K.D. Kokkotas, Quasinormal modes of Reissner–Nordström-anti-de Sitter black holes: Scalar, electromagnetic and gravitational perturbations. Phys. Rev. D 67, 064020 (2003). [arXiv:gr-qc/0301052 [gr-qc]]

    Article  MathSciNet  MATH  ADS  Google Scholar 

  98. V. Cardoso, J.L. Costa, K. Destounis, P. Hintz, A. Jansen, Strong cosmic censorship in charged black-hole spacetimes: Still subtle. Phys. Rev. D 98(10), 104007 (2018). [arXiv:1808.03631 [gr-qc]]

    Article  MathSciNet  ADS  Google Scholar 

  99. K. Destounis, Charged fermions and strong cosmic censorship. Phys. Lett. B 795, 211–219 (2019). [arXiv:1811.10629 [gr-qc]]

    Article  MathSciNet  MATH  ADS  Google Scholar 

  100. H. Liu, Z. Tang, K. Destounis, B. Wang, E. Papantonopoulos, H. Zhang, Strong Cosmic Censorship in higher-dimensional Reissner–Nordström–de Sitter spacetime. JHEP 03, 187 (2019). [arXiv:1902.01865 [gr-qc]]

    Article  MATH  ADS  Google Scholar 

  101. K. Destounis, Superradiant instability of charged scalar fields in higher-dimensional Reissner–Nordström–de Sitter black holes. Phys. Rev. D 100(4), 044054 (2019). [arXiv:1908.06117 [gr-qc]]

    Article  MathSciNet  ADS  Google Scholar 

  102. K. Destounis, R.D.B. Fontana, F.C. Mena, E. Papantonopoulos, Strong cosmic censorship in Horndeski theory. JHEP 10, 280 (2019). [arXiv:1908.09842 [gr-qc]]

    Article  MathSciNet  MATH  ADS  Google Scholar 

  103. K. Destounis, R.D.B. Fontana, F.C. Mena, Accelerating black holes: Quasinormal modes and late-time tails. Phys. Rev. D 102(4), 044005 (2020). [arXiv:2005.03028 [gr-qc]]

    Article  MathSciNet  ADS  Google Scholar 

  104. K. Destounis, R.D.B. Fontana, F.C. Mena, Stability of the Cauchy horizon in accelerating black-hole spacetimes. Phys. Rev. D 102(10), 104037 (2020). [arXiv:2006.01152 [gr-qc]]

    Article  MathSciNet  ADS  Google Scholar 

  105. A. Aragón, P.A. González, J. Saavedra, Y. Vásquez, Scalar quasinormal modes for \(2+1\)-dimensional Coulomb-like AdS black holes from nonlinear electrodynamics. Gen. Relativ. Gravit. 53(10), 91 (2021). [arXiv:2104.08603 [gr-qc]]

    Article  MathSciNet  MATH  ADS  Google Scholar 

  106. P.A. González, Á. Rincón, J. Saavedra, Y. Vásquez, Superradiant instability and charged scalar quasinormal modes for (\(2+1\))-dimensional Coulomb-like AdS black holes from nonlinear electrodynamics. Phys. Rev. D 104(8), 084047 (2021). [arXiv:2107.08611 [gr-qc]]

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

We thank the referee for his/her valuable comments and suggestions. This work is partially supported by ANID Chile through FONDECYT Grant N° 1220871 (P.A.G., and Y. V.), and FONDECYT Grant N° 1210635 and Nº 1220065 (J. S.). The author A. R. acknowledges Universidad de Tarapacá for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ángel Rincón.

Appendix: Numerical values

Appendix: Numerical values

See Tables 910111213, and 14.

Table 9 QNFs for scalar perturbations via the WKB method for \(q=0.1\), \(\mu =2\), \(l=5\) and \(k=0.75\) for several values of the non-minimal coupling parameter \(\xi\)
Table 10 QNFs for scalar perturbations via the WKB method for \(q \approx 1.39\), \(\mu =2\), \(l=5\) and \(k=0.75\) for several values of the non-minimal coupling parameter \(\xi\)
Table 11 QNFs for scalar perturbations via the WKB method for \(q=0.1\), \(\mu =2\), \(l=5\) and \(k=1.5\) for several values of the non-minimal coupling parameter \(\xi\)
Table 12 QNFs for scalar perturbations via the WKB method for \(q=1.27\), \(\mu =2\), \(l=5\) and \(k=1.5\) for several values of the non-minimal coupling parameter \(\xi\)
Table 13 QNFs for scalar perturbations via the WKB method for \(q=0.1\), \(\mu =2\), \(l=5\) and \(k=1.75\) for several values of the non-minimal coupling parameter \(\xi\)
Table 14 QNFs for scalar perturbations via the WKB method for \(q=1\), \(\mu =2\), \(l=5\) and \(k=1.75\) for several values of the non-minimal coupling parameter \(\xi\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rincón, Á., González, P.A., Panotopoulos, G. et al. Quasinormal modes for a non-minimally coupled scalar field in a five-dimensional Einstein–Power–Maxwell background. Eur. Phys. J. Plus 137, 1278 (2022). https://doi.org/10.1140/epjp/s13360-022-03438-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03438-4

Navigation