Skip to main content
Log in

Quasinormal modes for tensor and vector type perturbation of Gauss Bonnet black hole using third order WKB approach

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We obtain the quasinormal modes for tensor perturbations of Gauss–Bonnet (GB) black holes in d = 5, 7, 8 dimensions and vector perturbations in d =  5, 6, 7 and 8 dimensions using third order WKB formalism. The tensor perturbation for black holes in d = 6 is not considered because of the fact that the black hole is unstable to tensor mode perturbations. In the case of uncharged GB black hole, for both tensor and vector perturbations, the real part of the QN frequency increases as the Gauss–Bonnet coupling (α′) increases. The imaginary part first decreases upto a certain value of α′ and then increases with α′ for both tensor and vector perturbations. For larger values of α′, the QN frequencies for vector perturbation differs slightly from the QN frequencies for tensorial one. It has also been shown that as α′ → 0, the quasinormal frequencies for tensor and vector perturbations of the Schwarzschild black hole can be obtained. We have also calculated the quasinormal spectrum of the charged GB black hole for tensor perturbations. Here we have found that the real oscillation frequency increases, while the imaginary part of the frequency falls with the increase of the charge. We also show that the quasinormal frequencies for scalar field perturbations and the tensor gravitational perturbations do not match as was claimed in the literature. The difference in the result increases if we increase the GB coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kokkotas K.D. and Schmidt B.G. (1999). Living Rev. Rel. 2: 2

    MathSciNet  Google Scholar 

  2. Nollert H.-P. (1999). Class. Quantum Grav. 16: R159

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Regge T. and Wheeler J.A. (1957). Phys. Rev. 108: 1063

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Zerilli F.J. (1970). Phys. Rev. D2: 2141

    ADS  MathSciNet  Google Scholar 

  5. Vishveshwara C.V. (1970). Phys. Rev. D1: 2870

    ADS  Google Scholar 

  6. Vishveshwara C.V. (1970). Nature 227: 936

    Article  ADS  Google Scholar 

  7. Kokkotas, K.D., Stergioulas, N.: In: Mouråo A.M., et al. (eds.). Proceedings of the 5th International, Workshop on New Worlds in Astroparticle Physics, Faro, Portugal, 8–10 January 2005. World Scientific, Singapore (2006)

  8. Birmingham D., Sachs I. and Solodukhin S.N. (2002). Phys. Rev. Lett. 88: 151301

    Article  ADS  MathSciNet  Google Scholar 

  9. Birmingham D., Sachs I. and Solodukhin S.N. (2003). Phys. Rev. D67: 104026

    ADS  MathSciNet  Google Scholar 

  10. Hod S. (1998). Phys. Rev. Lett. 81: 4293

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Dreyer O. (2003). Phys. Rev. Lett. 90: 081301

    Article  ADS  Google Scholar 

  12. Motl L. and Neitzke A. (2003). Adv. Theor. Math. Phys. 7: 307

    MathSciNet  Google Scholar 

  13. Das S. and Shankaranarayanan S. (2005). Class. Quantum Grav. 22: L7

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Ghosh A., Shankaranarayanan S. and Das S. (2006). Class. Quantum Grav. 23: 1851

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Natário J. and Schiappa R. (2004). Adv. Theor. Math. Phys. 8: 1001

    MATH  MathSciNet  Google Scholar 

  16. Sen A. (2006). JHEP 0603: 008

    Article  ADS  Google Scholar 

  17. Moura F. and Schiappa R. (2007). Class. Quantum Grav. 24: 361

    Article  MATH  ADS  Google Scholar 

  18. Scherk J. and Schwarz J.H. (1974). Nucl. Phys. B81: 118

    Article  ADS  Google Scholar 

  19. Zwiebach B. (1985). Phys. Lett B156: 315

    ADS  Google Scholar 

  20. Boulware D.G. and Deser S. (1985). Phys. Rev. Lett. 55: 2656

    Article  ADS  Google Scholar 

  21. Wheeler J.T. (1986). Nucl. Phys. B268: 737

    Article  ADS  MathSciNet  Google Scholar 

  22. Wheeler J.T. (1986). Nucl. Phys. B273: 732

    Article  ADS  MathSciNet  Google Scholar 

  23. Wiltshire D.L. (1988). Phys. Rev. D38: 2445

    ADS  MathSciNet  Google Scholar 

  24. Meissner K.A. and Olechowski M. (2002). Phys. Rev. D65: 064017

    ADS  MathSciNet  Google Scholar 

  25. Cvetic M., Nojiri S. and Odintsov S.D. (2002). Nucl. Phys. B628: 295

    Article  ADS  MathSciNet  Google Scholar 

  26. Nojiri S., Odintsov S.D. and Ogushi S. (2002). Phys. Rev. D65: 023521

    ADS  MathSciNet  Google Scholar 

  27. Cho Y.M. and Neupane I.P. (2002). Phys. Rev. D66: 024044

    ADS  MathSciNet  Google Scholar 

  28. Neupane I.P. (2003). Phys. Rev. D 67: 061501

    Article  ADS  MathSciNet  Google Scholar 

  29. Cai R.G. (2004). Phys. Lett. B582: 237

    ADS  Google Scholar 

  30. Clunan T., Ross S.F. and Smith D.J. (2004). Class. Quantum Grav. 21: 3447

    Article  MATH  ADS  MathSciNet  Google Scholar 

  31. Barrau A., Grain J. and Alexeyev S.O. (2004). Phys. Lett. B584: 114

    ADS  Google Scholar 

  32. Iyer B.R., Iyer S. and Vishveshwara C.V. (1989). Class. Quantum Grav. 6: 1627

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. Konoplya R. (2005). Phys. Rev. D71: 024038

    ADS  MathSciNet  Google Scholar 

  34. Abdalla E., Konoplya R.A. and Molina C. (2005). Phys. Rev. D72: 084006

    ADS  MathSciNet  Google Scholar 

  35. Iyer S. (1987). Phys. Rev. D35: 3632

    ADS  Google Scholar 

  36. Dotti G. and Gleiser R.J. (2005). Class. Quantum Grav. 22: L1

    Article  MATH  ADS  MathSciNet  Google Scholar 

  37. Gleiser R.J. and Dotti G. (2005). Phys. Rev. D72: 124002

    ADS  MathSciNet  Google Scholar 

  38. Higuchi A. (1987). J. Math. Phys. 28: 1553

    Article  ADS  MathSciNet  Google Scholar 

  39. Rubin M.A. and Ordóñez C.R. (1984). J. Math. Phys. 25: 2888

    Article  MATH  ADS  MathSciNet  Google Scholar 

  40. Ishibashi A. and Kodama H. (2003). Prog. Theor. Phys. 110: 701

    Article  MATH  ADS  MathSciNet  Google Scholar 

  41. Kodama H. and Ishibashi A. (2003). Prog. Theor. Phys. 110: 901

    Article  MATH  ADS  MathSciNet  Google Scholar 

  42. Chandrasekhar S. and Detweiler S. (1975). Proc. Roy. Soc. (London) A344: 441

    ADS  Google Scholar 

  43. Ferrari V. and Mashhoon B. (1984). Phys. Rev. D30: 295

    ADS  MathSciNet  Google Scholar 

  44. Schutz B. and Will C.M. (1988). J. Astrophys. 291: L33

    Article  ADS  Google Scholar 

  45. Iyer S. and Will C.M. (1985). Phys. Rev. D35: 3621

    ADS  Google Scholar 

  46. Konoplya R.A. (2003). Phys.Rev. D68: 024018

    ADS  Google Scholar 

  47. Andersson N. (1992). Proc. R. Soc. (London) A439: 47

    ADS  MathSciNet  Google Scholar 

  48. Andersson N. and Linnaeus S. (1992). Phys. Rev. D46: 4179

    ADS  MathSciNet  Google Scholar 

  49. Leaver E.W. (1985). Proc. R. Soc. (London) A402: 285

    ADS  MathSciNet  Google Scholar 

  50. Cardoso V., Lemos J.P.S. and Yoshida S. (2004). Phys. Rev. D69: 044004

    ADS  MathSciNet  Google Scholar 

  51. Chakrabarti S.K. and Gupta K.S. (2006). Int. J. Mod. Phys. A21: 3565

    ADS  MathSciNet  Google Scholar 

  52. Konoplya R.A. (2003). Phys. Rev. D68: 124017

    ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayan K. Chakrabarti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakrabarti, S.K. Quasinormal modes for tensor and vector type perturbation of Gauss Bonnet black hole using third order WKB approach. Gen Relativ Gravit 39, 567–582 (2007). https://doi.org/10.1007/s10714-007-0404-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-007-0404-8

Keywords

Navigation