Skip to main content

Advertisement

Log in

Improving the performance of Sb2Se3 thin-film solar cells using pyrolytic ammonium metatungstate back contact layer

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Back surface recombination could have some adverse effects on superstrate antimony selenide (Sb2Se3) solar cells. Anode interface modification, such as inserting a buffer layer with appropriate energy-level matching, is necessary. Here, a novel interfacial material, pyrolytic ammonium metatungstate (PAMT), prepared by spray pyrolysis deposition, was introduced to modify the back contract of antimony selenide solar cells. Morpho-structural and thermal analysis showed that this material is different from crystalline molybdenum oxide powder. Monology characterization showed that PAMT preferentially fills the space of the Sb2Se3 grain boundary. The J–V test showed that this layer improved the interfacial contract between the absorber and the back electrode. The PAMT layer showed suitable energy matching with Sb2Se3, providing an effective channel for hole carriers transport from the absorber to the anode, and largely reducing back contact surface recombination. As a result, the PAMT-modified Sb2Se3 device exhibited a much higher photovoltaic performance, significantly improving the efficiency from 5.27% to 6.11%.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

This manuscript has associated data in a data repository. [Authors’ comment: All data included in this manuscript are available upon request by contacting with the corresponding author.]

References

  1. S. Chen, T. Liu, Z. Zheng, M. Ishaq, G. Liang, P. Fan, T. Chen, J. Tang, Recent progress and perspectives on Sb2Se3-based photocathodes for solar hydrogen production via photoelectrochemical water splitting. J. Energy Chem. 67(04), 508–523 (2022)

    Article  Google Scholar 

  2. S. Yao, J. Wang, J. Cheng, L. Fu, F. Xie, Y. Zhang, L. Li, Improved performance of thermally evaporated Sb2Se3 thin-film solar cells via substrate-cooling-speed control and hydrogen-sulfide treatment. ACS Appl. Mater. Interfaces. 12(21), 24112–24124 (2020)

    Article  Google Scholar 

  3. S. Zhang, J. Pang, Q. Cheng et al., High-performance electronics and optoelectronics of monolayer tungsten diselenide full film from pre-seeding strategy. InfoMat 3(12), 1455–1469 (2021)

    Article  Google Scholar 

  4. G. Liang, M. Chen, M. Ishaq, X. Li, R. Tang, Z. Zheng, Z. Su, P. Fan, X. Zhang, S. Chen, Crystal growth promotion and defects healing enable minimum open-circuit voltage deficit in antimony selenide solar cells. Adv Sci 9(9), 2105142 (2022)

    Article  Google Scholar 

  5. Y. Cao, C. Liu, J. Jiang et al., Theoretical insight into high-efficiency triple-junction tandem solar cells via the band engineering of antimony chalcogenides. Solar RRL 5(4), 2000800 (2021)

    Article  Google Scholar 

  6. M. Powalla, S. Paetel, E. Ahlswede, R. Wuerz, C.D. Wessendorf, T. Magorian Friedlmeier, Thin-film solar cells exceeding 22% solar cell efficiency: an overview on CdTe-, Cu (In, Ga) Se2-, and perovskite-based materials. Appl Phys Rev 5(4), 41602 (2018)

    Article  Google Scholar 

  7. Y. Wang, L. Tu, Y. Chang, S. Lin, T. Lin, C. Lai, Surface sulfurization of Cu (In, Ga) Se2 solar cells by cosputtering In2S3 in the one-step sputtering process. ACS Appl Energy Mater 4(10), 11555–11563 (2021)

    Article  Google Scholar 

  8. M.S. Eraky, M. Sanad, E.M. El-Sayed et al., Influence of the electrochemical processing parameters on the photocurrent–voltage conversion characteristics of copper bismuth selenide photoactive films. Eur Phys J Plus 137(8), 1–18 (2022)

    Article  Google Scholar 

  9. G. Grancini, M.K. Nazeeruddin, Dimensional tailoring of hybrid perovskites for photovoltaics. Nat Rev Mater 4(1), 4–22 (2019)

    Article  ADS  Google Scholar 

  10. G. Liang, Y. Luo, S. Chen, R. Tang, Z. Zheng, X. Li, X. Liu, Y. Liu, Y. Li, X. Chen, Sputtered and selenized Sb2Se3 thin-film solar cells with open-circuit voltage exceeding 500 mV. Nano Energy 73, 104806 (2020)

    Article  Google Scholar 

  11. R. Krautmann, N. Spalatu, R. Gunder, D. Abou-Ras, T. Unold, S. Schorr, M. Krunks, I.O. Acik, Analysis of grain orientation and defects in Sb2Se3 solar cells fabricated by close-spaced sublimation. Sol Energy 494–500, 225 (2021)

    Google Scholar 

  12. J. Tao, X. Hu, J. Xue, Y. Wang, G. Weng, S. Chen, Z. Zhu, J. Chu, Investigation of electronic transport mechanisms in Sb2Se3 thin-film solar cells. Sol Energy Mater Sol Cells 197, 1–6 (2019)

    Article  Google Scholar 

  13. Y. Pan, X. Hu, Y. Guo, X. Pan, F. Zhao, G. Weng, J. Tao, C. Zhao, J. Jiang, S. Chen, P. Yang, J. Chu, Vapor transport deposition of highly efficient Sb2(S, Se)3 solar cells via controllable orientation growth. Adv Func Mater 31(28), 2101476 (2021)

    Article  Google Scholar 

  14. Y. Cao, C. Liu, T. Yang et al., Gradient bandgap modification for highly efficient carrier transport in antimony sulfide-selenide tandem solar cells. Sol.Energy Mater Sol Cells 246, 111926 (2022)

    Article  Google Scholar 

  15. H. Shiel, O.S. Hutter, L.J. Phillips, M. Al Turkestani, V.R. Dhanak, T.D. Veal, K. Durose, J.D. Major, Chemical etching of Sb2Se3 solar cells: surface chemistry and back contact behaviour. J Phys: Energy 1(4), 45001 (2019)

    Google Scholar 

  16. J. Zhang, H. Guo, X. Jia, H. Ning, C. Ma, X. Wang, J. Qiu, N. Yuan, J. Ding, Improving the performance of Sb2Se3 thin-film solar cells using n-type MoO3 as the back contact layer. Sol Energy 214(2), 231–238 (2021)

    Article  ADS  Google Scholar 

  17. J. Tao, X. Hu, Y. Guo, J. Hong, K. Li, J. Jiang, S. Chen, C. Jing, F. Yue, P. Yang, Solution-processed SnO2 interfacial layer for highly efficient Sb2Se3 thin film solar cells. Nano Energy 60, 802–809 (2019)

    Article  Google Scholar 

  18. Z. Li, X. Liang, G. Li, H. Liu, H. Zhang, J. Guo, J. Chen, K. Shen, X. San, W. Yu, R.E.I. Schropp, Y. Mai, 9.2%-efficient core-shell structured antimony selenide nanorod array solar cells. Nat Commun 10(1), 125 (2019)

    Article  ADS  Google Scholar 

  19. X. Wang, R. Tang, Y. Yin, H. Ju, C. Zhu, T. Chen, Interfacial engineering for high efficiency solution processed Sb2Se3 solar cells. Sol Energy Mater Sol Cells 189, 5–10 (2019)

    Article  Google Scholar 

  20. C. Chen, D.C. Bobela, Y. Yang, S. Lu, K. Zeng, C. Ge, B. Yang, L. Gao, Y. Zhao, M.C. Beard, Characterization of basic physical properties of Sb2Se3 and its relevance for photovoltaics. Front Optoelectron 10(1), 18–30 (2017)

    Article  Google Scholar 

  21. T. Ju, B. Koo, J.W. Jo, M.J. Ko, Enhanced photovoltaic performance of solution-processed Sb2Se3 thin film solar cells by optimizing device structure. Curr Appl Phys 20(2), 282–287 (2020)

    Article  ADS  Google Scholar 

  22. D. Li, X. Yin, C.R. Grice, L. Guan, Z. Song, C. Wang, C. Chen, K. Li, A.J. Cimaroli, R.A. Awni, Stable and efficient CdS/Sb2Se3 solar cells prepared by scalable close space sublimation. Nano Energy 49, 346–353 (2018)

    Article  Google Scholar 

  23. H. Guo, Z. Chen, X. Wang, Q. Cang, X. Jia, C. Ma, N. Yuan, J. Ding, Enhancement in the efficiency of Sb2Se3 thin-film solar cells by increasing carrier concertation and inducing columnar growth of the grains. Solar RRL 3(2), 1800224 (2019)

    Article  Google Scholar 

  24. M. Courel, T. Jimenez, M. De Los, I. Santos et al., Impact of loss mechanisms through defects on Sb2 S1-xSex 3/CdS solar cells with pn structure. Eur Phys J Plus 137(3), 1–11 (2022)

    Article  Google Scholar 

  25. K. Li, S. Wang, C. Chen, R. Kondrotas, M. Hu, S. Lu, C. Wang, W. Chen, J. Tang, 7.5% n-i- Sb 2 Se 3 solar cells with CuSCN as a hole-transport layer. J Mater Chem A 7(16), 9665–9672 (2019)

    Article  Google Scholar 

  26. H. Guo, Z. Chen, X. Wang, Q. Cang, X. Jia, C. Ma, N. Yuan, J. Ding, Enhancement in the efficiency of Sb2Se3 thin-film solar cells by increasing carrier concertation and inducing columnar growth of the grains. Solar RRL 3(3), 1800224 (2019)

    Article  Google Scholar 

  27. Y. Cao, P. Qu, C. Wang et al., Epitaxial growth of vertically aligned antimony selenide nanorod arrays for heterostructure based self-powered photodetector advanced. Opt Mater 10(19), 2200816 (2022)

    Article  Google Scholar 

  28. C. Chen, L. Wang, L. Gao, D. Nam, D. Li, K. Li, Y. Zhao, C. Ge, H. Cheong, H. Liu, 6.5% certified efficiency Sb2Se3 solar cells using PbS colloidal quantum dot film as hole-transporting layer. ACS Energy Lett 2(9), 2125–2132 (2017)

    Article  Google Scholar 

  29. L. Guo, S.N. Vijayaraghavan, X. Duan, H.G. Menon, J. Wall, L. Kong, S. Gupta, L. Li, F. Yan, Stable and efficient Sb2Se3 solar cells with solution-processed NiOx hole-transport layer. Sol Energy 218, 525–531 (2021)

    Article  ADS  Google Scholar 

  30. C. Liu, K. Shen, D. Lin, Y. Cao, S. Qiu, J. Zheng, F. Bao, Y. Gao, H. Zhu, Z. Li, Back contact interfacial modification in highly-efficient all-inorganic planar nip Sb2Se3 solar cells. ACS Appl Mater Interfaces 12(34), 38397–38405 (2020)

    Article  Google Scholar 

  31. Y. Wang, J. Pang, Q. Cheng et al., Applications of 2D-layered palladium diselenide and its van der Waals heterostructures in electronics and optoelectronics. Nano-Micro Lett 13(1), 1–52 (2021)

    Article  ADS  Google Scholar 

  32. R. Ji, J. Cheng, X. Yang, J. Yu, L. Li, Enhanced charge carrier transport in spray-cast organic solar cells using solution processed MoO3 micro arrays. RSC Adv. 7(6), 3059–3065 (2017)

    Article  ADS  Google Scholar 

  33. M. Ezzeldien, M.I. Amer, M.S. Shalaby et al., Electron beam irradiation-induced changes in the microstructure and optoelectronic properties of nanostructured Co-doped SnO2 diluted magnetic semiconductor thin film. Eur Phys J Plus 137(8), 1–13 (2022)

    Article  Google Scholar 

  34. M. Fait, H. Lunk, M. Feist, M. Schneider, J.N. Dann, T.A. Frisk, Thermal decomposition of ammonium paratungstate tetrahydrate under non-reducing conditions: characterization by thermal analysis. X-ray Diffr spectrosc methods, Theramochim Acta 469, 12–22 (2008)

    Google Scholar 

  35. A.S. Salwa, M.S. Abd El-sadek, Annealing temperature effect to optimize the optical properties of SnS thin films. Eur Phys J Plus 136(6), 696 (2021)

    Article  Google Scholar 

  36. T. Zhang, C. Lee, B. Gong, B. Hoex. (2018). Thermal stability analysis of WOx and MoOx as hole-selective contacts for Si solar cells using in situ XPS, In AIP Conference Proceedings, AIP Publishing LLC, p. 40027

  37. C. Chen, Y. Jiang, Y. Wu, J. Guo, X. Kong, X. Wu, Y. Li, D. Zheng, S. Wu, X. Gao, Low-temperature-processed wox as electron transfer layer for planar perovskite solar cells exceeding 20% efficiency. Solar RRL 4(4), 1900499 (2020)

    Article  Google Scholar 

  38. A. Miguel, K. Contreras, J. Ramanathan, F. AbuShama, D.L. Hasoon, B. Young, B. Egass, R. Noufi, Diode characteristics in state-of-the-art ZnO/CdS/Cu (In1-x Gax) Se2 solar cells. Prog Photovolt: Res. Appl 13(3), 209–216 (2005)

    Article  Google Scholar 

  39. T. Mise, T. Nakada, Narrow-bandgap CuIn3Te5 thin-film solar cells. Prog. Photovoltaics Res. Appl. 21(4), 754–759 (2013)

    Article  Google Scholar 

  40. S.S. Hegedus, W.N. Shafarman, Thin-film solar cells: device measurements and analysis. Prog. Photovoltaics Res. Appl. 12(2–3), 155–176 (2004)

    Article  Google Scholar 

  41. A. Virtuani, E. Lotter, M. Powalla, U. Rau, J.H. Werner, M. Acciarri, Influence of Cu content on electronic transport and shunting behavior of Cu (In, Ga) Se 2 solar cells. J. Appl. Phys. 99(1), 14906 (2006)

    Article  ADS  Google Scholar 

  42. H. Elanzeery, The cause of interface recombination in Cu-rich CIS thin film solar cells (University of Luxembourg, Esch-sur-Alzette, Luxembourg, 2019)

    Google Scholar 

  43. C. Cheng, M. Li, H. Song, W. Li, J. Leng, W. Tian, R. Cui, C. Zhao, S. Jin, W. Liu, Enhanced performance of the Sb2Se3 thin-film solar cell by organic molecule-induced crystallization and suppression of the interface recombination. ACS Appl Energy Mater 4(5), 5079–5085 (2021)

    Article  Google Scholar 

  44. P. Caprioglio, C.M. Wolff, O.J. Sandberg, A. Armin, B. Rech, S. Albrecht, D. Neher, M. Stolterfoht, On the origin of the ideality factor in perovskite solar cells. Adv. Energy Mater. 10(27), 2000502 (2020)

    Article  Google Scholar 

  45. L. Fu, J. Yu, J. Wang, F. Xie, S. Yao, Y. Zhang, J. Cheng, L. Li, Thin film solar cells based on Ag-substituted CuSbS2 absorber. Chem. Eng. J. 400, 125906 (2020)

    Article  Google Scholar 

  46. F. Xie, H. Tang, X. Zhao, M. Li, L. Li, J. Cheng (2021) Thin-film solar cells using a selenized silver antimony sulfide absorber prepared by spray pyrolysis deposition, physica status solidi (RRL)-Rapid Research Letters, 15(12), 2000514.

  47. M. Zhao, J. Yu, L. Fu, Y. Guan, H. Tang, L. Li, J. Cheng, Thin-film solar cells based on selenized CuSbS2 absorber. Nanomaterials 11(11), 3005 (2021)

    Article  Google Scholar 

  48. J. Cheng, R. Hu, K. Wang, X. Meng, Y. Li, X. Yang, X. Liao, L. Li, K.B. Chong, Air-stable solar cells with 0.7 V open-circuit voltage using selenized antimony sulfide absorbers prepared by hydrazine-free solution method. Solar RRL 3(5), 1800346 (2019)

    Article  Google Scholar 

  49. M. Saadat, O. Amiri, P.H. Mahmood, Analysis and performance assessment of CuSbS2-based thin-film solar cells with different buffer layers. Eur Phys J Plus 137(5), 1–12 (2022)

    Article  Google Scholar 

  50. J. Zhou, D. Meng, T. Yang et al., Enhanced charge carrier transport via efficient grain conduction mode for Sb2Se3 solar cell applications. Appl. Surf. Sci. 591, 153169 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 62171069), the Program of Chongqing Science and Technology Commission (cstc2019jcyj-msxmX0877, cstc2019jscx-fxydX0048, cstc2019jcyjjqX0021), and the Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJZD-K201901302, KJQN201901348, KJCX2020048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Cheng.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Fu, L., Yao, S. et al. Improving the performance of Sb2Se3 thin-film solar cells using pyrolytic ammonium metatungstate back contact layer. Eur. Phys. J. Plus 137, 1209 (2022). https://doi.org/10.1140/epjp/s13360-022-03428-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03428-6

Navigation