Skip to main content
Log in

Stochastic state-transition-change process and particle physics

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The description of particle phenomena is important for basically all fields of physics. The contemporary theoretical statistical description of a particle phenomenon typically requires knowledge of the Hamiltonian of the system, cross sections or other information concerning various microscopic processes. However, this knowledge may not be available and need to be determined first on the basis of experimental data. Moreover, the diverse hitherto theoretical approaches are either restricted to relatively very small class of particle phenomena or are not easily usable for analysis of experimental data. Therefore, new state-transition-change (STC) stochastic process is proposed. STC stochastic process satisfies Markov property and opens up new possibilities for obtaining in unified way deeper insight to experiments having independent outcomes. With its help it is possible to determine probability density functions characterizing states of a system and probabilities of transitions of the states on the basis of experimental data. For example, in the context of particle physics it allows to describe in unified way particle decays, random motion of particles, particle–matter interactions (such as transmission of light, laser beam, through various optical elements), as well as particle–particle interactions (collisions). Not all particle experiments satisfy the assumptions of STC stochastic process, but broad class of particle experiments can be analyzed with its help.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Author’s comment: This is a theoretical study and no experimental data has been listed.]

Notes

  1. The term kinetic theory [6] is sometimes [7] regarded as the aspect of statistical mechanics that is concerned with the derivation and study of equations for the particle phase space density or distribution function (called kinetic equations or transport equations). The term transport theory is in [7] restricted to mathematical discipline concerned with the solutions of kinetic equations and applications of the solutions to the study of particle transport processes. We will not use this distinction. The term kinetic theory will not be used at all and the term transport theory will be used in very general sense denoting any theory which describes transport phenomena, not necessary related directly to particles, and try to provide some insight into transport processes.

  2. The TOTEM acronym stands for TOTal, Elastic and diffractive cross section Measurement, see totem.web.cern.ch.

References

  1. L.A. Glasgow, Transport Phenomena: An Introduction to Advanced Topics (Wiley, Hoboken, 2010)

    Book  Google Scholar 

  2. R. Byron Bird, W.E. Stewart, E.N. Lightfoot, D.J. Klingenberg, Introductory Transport Phenomena (Wiley, Hoboken, 2015)

    Google Scholar 

  3. J. Welty, G.L. Rorrer, D.G. Foster, Fundamentals of Momentum, Heat, and Mass Transfer, 6th edn. (Wiley, Hoboken, 2014)

    Google Scholar 

  4. S. Chandrasekhar, Radiative Transfer (Dover Publications Inc, New York, 1960)

    MATH  Google Scholar 

  5. A. Peraiah, An Introduction to Radiative Transfer: Methods and Applications in Astrophysics (Cambridge University Press, Cambridge, 2001). https://doi.org/10.1017/CBO9781139164474

    Book  MATH  Google Scholar 

  6. R.L. Liboff, Kinetic Theory: Classical, Quantum, and Relativistic Descriptions, 3rd edn. (Springer, New York, 2003)

    Google Scholar 

  7. J.J. Duderstadt, W.R. Martin, Transport Theory (Wiley, New York, 1979)

    MATH  Google Scholar 

  8. C. Cercignani, Applied Mathematical Sciences, vol. 67 (Springer, New York, 1988)

    Google Scholar 

  9. M.M.R. Williams, Mathematical Methods in Particle Transport Theory (Butterworths, London, 1971)

    Google Scholar 

  10. R. Robson, R.D. White, M. Hildebrandt, Fundamentals of Charged Particle Transport in Gases and Condensed Matter (CRC Press, Boca Raton, 2017)

    Book  Google Scholar 

  11. M.H. Peters, Molecular Thermodynamics and Transport Phenomena: Complexities of Scales in Time and Space (McGraw-Hill, New York, 2005). https://doi.org/10.1036/0071445617

    Book  Google Scholar 

  12. M. Lundstrom, Fundamentals of Carrier Transport, 2nd edn. (Cambridge University Press, Cambridge, 2000). https://doi.org/10.1017/CBO9780511618611

    Book  Google Scholar 

  13. M. Touati, J.-L. Feugeas, J.J. Ph Nicolaï, L.G. Santos, V.T. Tikhonchuk, A reduced model for relativistic electron beam transport in solids and dense plasmas. New J. Phys. 16(7), 073014 (2014). https://doi.org/10.1088/1367-2630/16/7/073014

    Article  ADS  Google Scholar 

  14. P.M. Bellan, Fundamentals of Plasma Physics (Cambridge University Press, Cambridge, 2006). https://doi.org/10.1017/CBO9780511807183

    Book  Google Scholar 

  15. G. Colonna, A. D’Angola (eds.), Plasma Modeling (IOP Publishing, Bristol, 2016), pp. 2053–2563. https://doi.org/10.1088/978-0-7503-1200-4

    Book  Google Scholar 

  16. A. Haghighat, Monte Carlo Methods for Particle Transport (CRC Press, Boca Raton, 2015)

    MATH  Google Scholar 

  17. J.W. Goodman, Statistical Optics. Wiley Series in Pure and Applied Optics, 2nd edn. (Wiley, Hoboken, 2015)

    Google Scholar 

  18. M. Planck, Zur Theorie des Gesetzes der Energieverteilung im Normalspectrum. Verhandl. Dtsc. Phys. Ges. 2, 237 (1900)

    MATH  Google Scholar 

  19. M. Planck, Ueber das gesetz der energieverteilung im normalspectrum. Ann. Phys. 309(3), 553–563 (1901). https://doi.org/10.1002/andp.19013090310

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Einstein, Über einen die erzeugung und verwandlung des lichtes betreffenden heuristischen gesichtspunkt. Ann. Phys. 322(6), 132–148 (1905). https://doi.org/10.1002/andp.19053220607

    Article  MATH  Google Scholar 

  21. R.C. Tolman, The Principles of Statistical Mechanics (Courier Corporation, North Chelmsford, 1938)

    MATH  Google Scholar 

  22. R. Coleman, Stochastic Processes (Springer, Dordrecht, 1974). https://doi.org/10.1007/978-94-010-9796-3

    Book  Google Scholar 

  23. G. Grimmett, D. Stirzaker, Probability and Random Processes (Clarendon Press, Oxford University Press, Oxford, 1982)

    MATH  Google Scholar 

  24. P. Brémaud, Probability Theory and Stochastic Processes (Springer, Cham, 2020). https://doi.org/10.1007/978-3-030-40183-2

    Book  MATH  Google Scholar 

  25. M.V. Lokajíček, J. Procházka, The contemporary state of fundamental physical research and the future path to scientific knowledge, 2019. arXiv:1610.08331

  26. J. Procházka, Stochastic state-transition-change process and time resolved velocity spectrometry, 2022. arXiv:2204.00626v2

  27. M.V. Lokajicek, J. Prochazka, Hamiltonian equations and inertial mass increase, 2017. arXiv:1110.2771

  28. J. Procházka, Stochastic state-transition-change process and three polarizers experiment, 2022. arXiv:2204.10280v1

  29. H.H. Telle, A.G. Urena, R.J. Donovan, Laser Chemistry: Spectroscopy, Dynamics and Applications (Wiley, London, 2007)

    Google Scholar 

  30. T. Pisarczyk, S.Y. Gus’kov, R. Dudzak, T. Chodukowski, J. Dostal, N.N. Demchenko, P. Korneev, Z. Kalinowska, M. Kalal, O. Renner, M. Smid, S. Borodziuk, E. Krousky, J. Ullschmied, J. Hrebicek, T. Medrik, J. Golasowski, M. Pfeifer, J. Skala, P. Pisarczyk, Space-time resolved measurements of spontaneous magnetic fields in laser-produced plasma. Phys. Plasmas 22, 102706 (2015). https://doi.org/10.1063/1.4933364

    Article  ADS  Google Scholar 

  31. V. Munzar, D. Klir, J. Cikhardt, J. Kravarik, P. Kubes, J. Malir, J. Novotny, K. Rezac, A.V. Shishlov, V.A. Kokshenev, R.K. Cherdizov, N.A. Ratakhin, Mapping of azimuthal b-fields in z-pinch plasmas using z-pinch-driven ion deflectometry. Phys. Plasmas 28(6), 062702 (2021). https://doi.org/10.1063/5.0040515

    Article  ADS  Google Scholar 

  32. M. Borghesi, A. Schiavi, D.H. Campbell, M.G. Haines, O. Willi, A.J. MacKinnon, P. Patel, M. Galimberti, L.A. Gizzi, Proton imaging detection of transient electromagnetic fields in laser-plasma interactions (invited). Rev. Sci. Instrum. 74(3), 1688–1693 (2003). https://doi.org/10.1063/1.1534390

    Article  ADS  Google Scholar 

  33. C.K. Li, F.H. Séguin, J.A. Frenje, J.R. Rygg, R.D. Petrasso, R.P.J. Town, P.A. Amendt, S.P. Hatchett, O.L. Landen, A.J. Mackinnon, P.K. Patel, V.A. Smalyuk, T.C. Sangster, J.P. Knauer, Measuring \(E\) and \(B\) fields in laser-produced plasmas with monoenergetic proton radiography. Phys. Rev. Lett. 97, 135003 (2006). https://doi.org/10.1103/PhysRevLett.97.135003

    Article  ADS  Google Scholar 

  34. C.A.J. Palmer, P.T. Campbell, Y. Ma, L. Antonelli, A.F.A. Bott, G. Gregori, J. Halliday, Y. Katzir, P. Kordell, K. Krushelnick, S.V. Lebedev, E. Montgomery, M. Notley, D.C. Carroll, C.P. Ridgers, A.A. Schekochihin, M.J.V. Streeter, A.G.R. Thomas, E.R. Tubman, N. Woolsey, L. Willingale, Field reconstruction from proton radiography of intense laser driven magnetic reconnection. Phys. Plasmas 26(8), 083109 (2019). https://doi.org/10.1063/1.5092733

    Article  ADS  Google Scholar 

  35. V.T. Tikhonchuk, Physics of laser plasma interaction and particle transport in the context of inertial confinement fusion. Nucl. Fusion 59(3), 032001 (2019). https://doi.org/10.1088/1741-4326/aab21a

    Article  ADS  Google Scholar 

  36. S.M. Vinko, V. Vozda, J. Andreasson, S. Bajt, J. Bielecki, T. Burian, J. Chalupsky, O. Ciricosta, M.P. Desjarlais, H. Fleckenstein, J. Hajdu, V. Hajkova, P. Hollebon, L. Juha, M.F. Kasim, E.E. McBride, K. Muehlig, T.R. Preston, D.S. Rackstraw, S. Roling, S. Toleikis, J.S. Wark, H. Zacharias, Time-resolved XUV opacity measurements of warm dense aluminum. Phys. Rev. Lett. 124, 225002 (2020). https://doi.org/10.1103/PhysRevLett.124.225002

    Article  ADS  Google Scholar 

  37. J. Barilla, M.V. Lokajíček, H. Pisaková, P. Simr, Simulation of the chemical stage in water radiolysis with the help of continuous Petri nets. Radiat. Phys. Chem. 97, 262–269 (2014). https://doi.org/10.1016/j.radphyschem.2013.12.019

    Article  ADS  Google Scholar 

  38. W. Herr, B. Muratori, Concept of luminosity (2006), pp. 361–378, CERN-2006-02

  39. M. Deile, Pileup probabilities and events per bunch-crossing. CERN-TOTEM-NOTE-2007-002 (2007)

  40. TOTEM Collaboration. Measurement of elastic pp scattering at \(\sqrt{s} = 8\) tev in the coulomb-nuclear interference region: determination of the \(\rho\)-parameter and the total cross-section. Eur. Phys. J. C 76, 661 (2016). https://doi.org/10.1140/epjc/s10052-016-4399-8

  41. CMS Collaboration, The CMS Precision Proton Spectrometer at the HL-LHC—expression of interest. Technical Report CMS-NOTE-2020-008, CERN, Geneva (2020). See also arXiv:2103.02752

  42. J. Procházka, V. Kundrát, M.V. Lokajíček, Models of elastic pp scattering at high energies—possibilities, limitations, assumptions, and open questions. Ukr. J. Phys. 64(8), 725–731 (2019). https://doi.org/10.15407/ujpe64.8.725

    Article  Google Scholar 

  43. J. Procházka, M.V. Lokajíček, V. Kundrát, Dependence of elastic hadron collisions on impact parameter. Eur. Phys. J. Plus 131, 147 (2016). https://doi.org/10.1140/epjp/i2016-16147-x, see also arXiv:1509.05343

  44. J. Procházka, Elastic proton–proton collisions at high energies. PhD thesis, Charles University in Prague, 2018. presented on 25 Sep 2018

  45. J. Procházka, V. Kundrát, Eikonal model analysis of elastic proton–proton collisions at 52.8 GeV and 8 TeV. Eur. Phys. J. C 80, 779 (2020). https://doi.org/10.1140/epjc/s10052-020-8334-7, see also arXiv:1606.09479

  46. M.V. Lokajíček, V. Kundrát, J. Procházka, Schrödinger Equation and (Future) Quantum Physics (InTech Publisher, 2013), pp. 105–132. https://doi.org/10.5772/53844

    Book  Google Scholar 

  47. D.S. Lemons, An Introduction to Stochastic Processes in Physics (Johns Hopkins University Press, Baltimore, 2002)

    MATH  Google Scholar 

  48. M. Scott, Applied Stochastic Processes in Science and Engineering (University of Waterloo, Waterloo, 2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Procházka.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Procházka, J. Stochastic state-transition-change process and particle physics. Eur. Phys. J. Plus 137, 955 (2022). https://doi.org/10.1140/epjp/s13360-022-03102-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03102-x

Navigation