Skip to main content
Log in

High-Velocity Estimates for the Scattering Operator and Aharonov-Bohm Effect in Three Dimensions

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We obtain high-velocity estimates with error bounds for the scattering operator of the Schrödinger equation in three dimensions with electromagnetic potentials in the exterior of bounded obstacles that are handlebodies. A particular case is a finite number of tori. We prove our results with time-dependent methods. We consider high-velocity estimates where the direction of the velocity of the incoming electrons is kept fixed as its absolute value goes to infinity. In the case of one torus our results give a rigorous proof that quantum mechanics predicts the interference patterns observed in the fundamental experiments of Tonomura et al. that gave conclusive evidence of the existence of the Aharonov-Bohm effect using a toroidal magnet. We give a method for the reconstruction of the flux of the magnetic field over a cross-section of the torus modulo 2π. Equivalently, we determine modulo 2π the difference in phase for two electrons that travel to infinity, when one goes inside the hole and the other outside it. For this purpose we only need the high-velocity limit of the scattering operator for one direction of the velocity of the incoming electrons. When there are several tori-or more generally handlebodies-the information that we obtain in the fluxes, and on the difference of phases, depends on the relative position of the tori and on the direction of the velocities when we take the high-velocity limit of the incoming electrons. For some locations of the tori we can determine all the fluxes modulo 2π by taking the high-velocity limit in only one direction. We also give a method for the unique reconstruction of the electric potential and the magnetic field outside the handlebodies from the high-velocity limit of the scattering operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams R.A., Fournier J.J.F.: Sobolev Spaces. Amsterdam Academic Press, Oxford (2003)

    MATH  Google Scholar 

  2. Agmon, S.: Lectures on Elliptic Boundary Value Problems. Princeton, NJ: D. Van Nostrand, 1965

    MATH  Google Scholar 

  3. Aharonov Y., Bohm D.: Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485–491 (1959)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Arians S.: Geometric approach to inverse scattering for the Schrödinger equation with magnetic and electric potentials. J. Math. Phys. 38, 2761–2773 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Arians, S.:Inverse Streutheorie für die Schrödinger Gleichung mit Magnet Felder. Dissertation RWTH-Aachen, Berlin, Logos, 1997

  6. Arians S.: Geometric approach to inverse scattering for hydrogen-like systems in a homogeneous magnetic field. J. Math. Phys. 39, 1730–1743 (1998)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Bredon G.E.: Topology and Geometry. Springer-Verlag, New York (1993)

    MATH  Google Scholar 

  8. de Rham G.: Differentiable Manifolds. Springer-Verlag, Berlin (1984)

    MATH  Google Scholar 

  9. Ehrenberg W., Siday R.E.: The refractive index in electron optics and the principles of dynamics. Proc. Phys. Soc. London B 62, 8–21 (1949)

    Article  ADS  Google Scholar 

  10. Eskin G.: Inverse boundary value problems and the Aharonov-Bohm effect. Inverse Problems 19, 49–62 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Eskin G.: Inverse boundary value problems in domains with several obstacles. Inverse Problems 20, 1497–1516 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Eskin, G.: Inverse problems for the Schrödinger equations with time-dependent electromagnetic potentials and the Aharonov-Bohm effect. http://arXiv.org/list/math.AP/0611342v1, 2006

  13. Eskin, G.: Optical Aharonov-Bohm effect: an inverse hyperbolic problems approach. http://arXiv.org/abs/0707.2835v2[math-ph], 2007

  14. Enss V., Weder R.: The geometrical approach to multidimensional inverse scattering. J. Math. Phys. 36, 3902–3921 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Gompf, R.E., Stipsicz, A.I.: 4-Manifolds and Kirby Calculus, Graduate Studies in Mathematics 20, Providence, RI: Amer. Math. Soc., 1999

  16. Greenberg M.J., Harper J.R.: Algebraic Topology, A First Course. Addison-Wesley, New York (1981)

    MATH  Google Scholar 

  17. Hatcher A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  18. Helgason S.: Groups and Geometric Analysis. Academic Press, Orlando (1984)

    MATH  Google Scholar 

  19. Helgason, S.: The Radon Transform. Progress in Mathematics Vol 5, 2nd edn, Berlin: Birkäuser, 1999

  20. Jung, W.: Der geometrische Ansatz zur inversen Streutheorie bei der Dirac-Gleichung. Diplomarbeit RWTH-Aachen, 1996

  21. Jung W.: Geometrical approach to inverse scattering for the Dirac equation. J. Math. Phys. 38, 39–48 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Jung, W.: Gauge transformations and inverse quantum scattering with medium-range magnetic fields. Math. Phys. Electron. J. 11, paper 5 (2005), 32 pp

    Google Scholar 

  23. Kato T.: Perturbation Theory for Linear Operators. Second Edition. Springer-Verlag, Berlin (1976)

    Google Scholar 

  24. Katchalov A., Kurylev Ya.: Multidimensional inverse problem with incomplete boundary spectral data. Comm. Part. Differ. Eqs. 23, 55–95 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kurylev, Y., Lassas, M.: Inverse problems and index formulae for Dirac operators. http://arXiv.org/list/math.AP/0501049v2, 2006

  26. Martensen, E.: Potentialtheorie. Stuttgart: B.G. Tubner, 1968

  27. Natterer F.: The Mathematics of Computerized Tomography. Teubner, Stuttgart (1986)

    MATH  Google Scholar 

  28. Nicoleau F.: An inverse scattering problem with the Aharonov-Bohm effect. J. Math. Phys 41, 5223–5237 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. Olariu S., Popescu I.I.: The quantum effects of electromagnetic fluxes. Rev. Mod. Phys. 57, 339–436 (1985)

    Article  ADS  Google Scholar 

  30. Peshkin, M., Tonomura, A.: The Aharonov-Bohm Effect. Lecture Notes in Phys. 340, Berlin: Springer-Verlag, 1989

  31. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, II. Fourier Analysis, Self-Adjointness. New York: Academic Press, 1975

  32. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, III. Scattering Theory. New York: Academic Press, 1979

  33. Roux Ph.: Scattering by a toroidal coil. J. Phys. A: Math. Gen. 36, 5293–5304 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. Roux Ph., Yafaev D.: On the mathematical theory of the Aharonov-Bohm effect. J. Phys. A: Math. Gen. 35, 7481–7492 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  35. Schwarz, G.: Hodge Decomposition- A Method for Solving Boundary Value Problems. Lecture Notes in Mathematics 1607, Berlin: Springer, 1995

  36. Triebel H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdan (1978)

    Google Scholar 

  37. Tonomura A., Matsuda T., Suzuki R., Fukuhara A., Osakabe N., Umezaki H., Endo J., Shinagawa K., Sugita Y., Fujiwara H.: Phys. Rev. Lett. 48, 1443–1446 (1982)

    Article  ADS  Google Scholar 

  38. Tonomura A., Osakabe N., Matsuda T., Kawasaki T., Endo J., Yano S., Yamada H.: Phys. Rev. Lett. 56, 792–795 (1986)

    Article  ADS  Google Scholar 

  39. Neudert M., von Wahl W.: Asymptotic behaviour of the div-curl problem in exterior domains. Adv. Differ. Eqs. 6, 1347–1376 (2001)

    MATH  Google Scholar 

  40. Weder R.: The Aharonov-Bohm effect and time-dependent inverse scattering theory. Inverse Problems 18, 1041–1056 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  41. Warner F.W.: Foundations of Differentiable Manifolds. Springer-Verlag, Berlin (1983)

    MATH  Google Scholar 

  42. Yafaev D.R.: Scattering matrix for magnetic potentials with Coulomb decay at infinity. Int. Eqs. Opr Theory 47, 217–249 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  43. Yafaev D.R.: Scattering by magnetic fields. St. Petersburg Math. J. 17, 875–895 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  44. Wu T.T., Yang C.N.: Concept of nonintegrable phase factors and global formulation of gauge fields. Phys. Rev. D (3) 12, 3845–3857 (1975)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Weder.

Additional information

Communicated by I.M. Sigal

Research partially supported by CONACYT under Project P42553­F.

On leave of absence from Departamento de Métodos Matemáticos y Numéricos. Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas. Universidad Nacional Autónoma de México. Apartado Postal 20-726, México DF 01000. Ricardo Weder is a Fellow of the Sistema Nacional de Investigadores.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ballesteros, M., Weder, R. High-Velocity Estimates for the Scattering Operator and Aharonov-Bohm Effect in Three Dimensions. Commun. Math. Phys. 285, 345–398 (2009). https://doi.org/10.1007/s00220-008-0579-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0579-1

Keywords

Navigation