Skip to main content
Log in

Probing new physics scale from TXS 0506+056 blazar neutrinos

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Supported by the recent detection of a TXS 0506+056 blazar neutrino with an energy in the TeV–PeV range detected by the IceCube experiment, a probe of a new physics scale \(\Lambda _{\mathrm{NP}}\)related to high-energy cosmic neutrinos is provided. At Standard Model energies, the effect of the underlying physics \(\Lambda _{\mathrm{NP}}\) is first investigated. Then, the recorded IceCube170922A data is used to approach the scale of such a new physics which lies above the Grand Unified Theory scale \(\Lambda _{\mathrm{NP}}\) \(\gtrsim \,10^{25}\) eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. A transparent medium instrumented with photomultipliers that transform the Cherenkov light into electrical signals using the photoelectric effect.

  2. Natural units \(c=\hbar =1\) are used.

References

  1. C. Quigg, Gauge Theories of the Strong, Weak, and Electromagnetic Interactions (Benjamin Cummings Publishing Company Inc, New York, 1983)

    MATH  Google Scholar 

  2. T.P. Cheng, L.F. Li, Gauge Theories of Elementary Particle Physics (Oxford University Press, London, 1984)

    Google Scholar 

  3. S.L. Glashow, Partial symmetries of weak interactions. Nucl. Phys. 22, 579 (1961)

    Article  Google Scholar 

  4. S. Weinberg, A model of leptons. Phys. Rev. Lett. 19, 1264–1269 (1967)

    Article  ADS  Google Scholar 

  5. A. Salam, Elementary particle theory, in Proceedings of the Nobel Symposium held 1968 at Lerum, Sweden, pp. 367–377 (1968)

  6. F. Halzen, D. Hooper, High-energy neutrino astronomy: the cosmic ray connection. Rep. Prog. Phys. 65, 1025–1078 (2002)

    Article  ADS  Google Scholar 

  7. F. John Beacom, The diffuse supernova neutrino background. Ann. Rev. Nucl. Part. Sci. 40, 181–212 (1990)

    Article  Google Scholar 

  8. G. Amelino-Camelia, Quantum-spacetime phenomenology. Living Rev. Relativ. 16, 5 (2013)

    Article  ADS  Google Scholar 

  9. U. Jacob, T. Piran, Neutrinos from gamma-ray bursts as a tool to explore quantum-gravity-induced Lorentz violation. Nat. Phys. 3, 87–90 (2007)

    Article  Google Scholar 

  10. G. Amelino-Camelia, G. D’Amico, G. Rosati, N. Loret, In-vacuo-dispersion features for GRB neutrinos and photons. Nat. Astron. 1, 0139 (2017)

  11. Y. Huang, B.Q. Ma, Lorentz violation from gamma-ray burst neutrinos. Commun. Phys. 1, 62 (2018)

    Article  Google Scholar 

  12. IceCube Collaboration, Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert. Science 361, 147–151 (2018)

  13. M.G. Aartsen et al., First observation of PeV-energy neutrinos with IceCube. Phys. Rev. Lett. 111, 021103 (2013)

    Article  ADS  Google Scholar 

  14. M.G. Aartsen et al., Evidence for high-energy extraterrestrial neutrinos at the IceCube detector. Science 342, 1242856 (2013)

    Article  Google Scholar 

  15. M.G. Aartsen et al., Atmospheric and astrophysical neutrinos above 1 TeV interacting in IceCube. Phys. Rev. D 91(2), 022001 (2015)

    Article  ADS  Google Scholar 

  16. The IceCube et al, Multi-messenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A. Science 361, eaat1378 (2018)

  17. A. Albert et al, Search for neutrinos from TXS 0506+056 with the ANTARES telescope. arXiv:1807.04309 (2018)

  18. F. Halzen, D. Hooper, High-energy Neutrino Astronomy: The Cosmic Ray Connection. Rep. Prog. Phys. 65 (2002)

  19. A. Roberts, The birth of high-energy neutrino astronomy: a personal history of the DUMAND project. Rev. Mod. Phys. 64, 259 (1992)

    Article  ADS  Google Scholar 

  20. S. Weinberg, Baryon-and Lepton-nonconserving processes. PRL 43, 1566 (1979)

    Article  ADS  Google Scholar 

  21. F. Wilczek, A. Zee, Operator analysis of nucleon decay. Phys. Rev. Lett. 43, 1571 (1979)

    Article  ADS  Google Scholar 

  22. P.W. Higgs, Broken symmetries and the masses of Gauge bosons. PRL 13(16), 508–509 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  23. J. Ellis, M.K. Gaillard, D.V. Nanopoulos, S. Rudaz, Uncertainties in the proton lifetime. Phys. Lett. B. 90, 249 (1980)

    Article  ADS  Google Scholar 

  24. G. Amelino-Camelia, J. Ellis, N.E. Mavromatos, D.V. Nanopoulos, S. Sarkar, Potential sensitivity of gamma-ray Burster observations to wave dispersion in vacuo. Nature 393, 763–765 (1998)

    Article  ADS  Google Scholar 

  25. M. Green, J. Schwarz, E. Witten, Superstring Theory (Cambridge University Press, Cambridge, 1987)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to their families for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salah Eddine Ennadifi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belhaj, A., Douhou, K. & Ennadifi, S.E. Probing new physics scale from TXS 0506+056 blazar neutrinos. Eur. Phys. J. Plus 137, 568 (2022). https://doi.org/10.1140/epjp/s13360-022-02792-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02792-7

Navigation