Skip to main content
Log in

Tailoring the morphology of CoNi alloy by static magnetic field for electromagnetic wave absorption

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In quest to find a non-contact self-assembly synthesis of magnetic materials, magnetic field assisted chemical reactions have attracted enormous research attention. In this study, the influence of static magnetic field on structure, self-assembly, and magnetic and microwave absorption properties of CoNi alloy has been reported. By applying the magnetic field, the obtained CoNi nanochains own uniform size and superior magnetic and microwave absorption performance. Results demonstrated that properties of CoNi depend on their shape and morphology, as the shape of particle varied, the value of saturation magnetization (Ms) gradually increased. In addition, the CoNi nanochains synthesized under magnetic field achieved the minimum reflection loss (RL) of − 38 dB with a sample thickness of 3 mm. This improved microwave absorption performance can be attributed to conduction loss, eddy current loss, and interchain multiple reflections of microwaves. Therefore, it is convincing that magnetic fields can greatly influence the properties of CoNi by varying shape and morphology. This study provides a new route for designing novel heterostructure materials under the static magnetic field, which can be used not only in microwave absorption devices but also in other practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5.
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N. Gao, W.-P. Li, W.-S. Wang, D.-P. Liu, Y.-M. Cui, L. Guo, G.-S. Wang, A.C.S. Appl, Mater. Interfaces 12, 14416 (2020)

    Article  Google Scholar 

  2. S. Wang, X. Huang, W. Zhang, Appl. Phys. A 127, 742 (2021)

    Article  Google Scholar 

  3. N. Yousefi, X. Sun, X. Lin, X. Shen, J. Jia, B. Zhang, B. Tang, M. Chan, J. Kim, Adv. Mater. 26, 5480 (2014)

    Article  Google Scholar 

  4. J. Feng, Y. Zong, Y. Sun, Y. Zhang, X. Yang, G. Long, Y. Wang, X. Li, X. Zheng, Chem. Eng. J. 345, 441 (2018)

    Article  Google Scholar 

  5. X. Chen, Z. Jia, A. Feng, B. Wang, X. Tong, C. Zhang, G. Wu, J. Colloid Interface Sci. 553, 465–474 (2019)

    Article  ADS  Google Scholar 

  6. A. Hassan, M.A. Aslam, M. Bilal, M.S. Khan, S. ur Rehman, K. Ma, J. Wang, Z. Sheng, Ceram. Int. 47, 20706 (2021)

    Article  Google Scholar 

  7. R. Ahmed, R. Si, S. ur Rehman, Results Phys. 20, 103623 (2021)

    Article  Google Scholar 

  8. D. Lan, M. Qin, R. Yang, S. Chen, H. Wu, Y. Fan, Q. Fu, F. Zhang, J. Colloid Interface Sci. 533, 481 (2019)

    Article  ADS  Google Scholar 

  9. H.T. Yudistira, K. Kananda, Eur. Phys. J. Plus 136, 603 (2021)

    Article  Google Scholar 

  10. S. ur Rehman, J. Liu, Z. Fang, J. Wang, R. Ahmed, C. Wang, H. Bi, ACS Appl. Nano Mater. 2, 4451 (2019)

    Article  Google Scholar 

  11. J. Yu, S. Pan, L. Cheng, Y. Liu, L. Huang, Appl. Phys. A 126, 348 (2020)

    Article  ADS  Google Scholar 

  12. H. Xu, X. Yin, M. Zhu, M. Han, Z. Hou, X. Li, L. Zhang, L. Cheng, A.C.S. Appl, Mater. Interfaces 9, 6332 (2017)

    Article  Google Scholar 

  13. P.H. Zhou, L.J. Deng, J.L. Xie, D.F. Liang, J. Alloys Compd. 448, 303 (2008)

    Article  Google Scholar 

  14. H.-Y. Wang, X.-B. Sun, S.-H. Yang, P.-Y. Zhao, X.-J. Zhang, G.-S. Wang, Y. Huang, Nano-Micro Lett. 13, 206 (2021)

    Article  ADS  Google Scholar 

  15. X. Guo, Z. Bai, B. Zhao, R. Zhang, J. Chen, J. Mater. Sci. Mater. Electron. 27, 8408 (2016)

    Article  Google Scholar 

  16. H. Li, J. Liao, Y. Feng, S. Yu, X. Zhang, Z. Jin, Mater. Lett. 67, 346 (2012)

    Article  Google Scholar 

  17. S. ur Rehman, J. Liu, R. Ahmed, H. Bi, J. Saudi Chem. Soc. 23, 385 (2019)

    Article  Google Scholar 

  18. Q. Liu, Q. Cao, X. Zhao, H. Bi, C. Wang, D.S. Wu, R. Che, A.C.S. Appl, Mater. Interfaces 7, 4233 (2015)

    Article  Google Scholar 

  19. Q. Xu, Z.-J. Wang, Y.-G. Wang, H.-Y. Sun, J. Magn. Magn. Mater. 419, 166 (2016)

    Article  ADS  Google Scholar 

  20. H. Li, J. Liao, Y. Feng, S. Yu, X. Zhang, Z. Jin, CrystEngComm 14, 2974 (2012)

    Article  Google Scholar 

  21. Q. Liu, X. Xu, W. Xia, R. Che, C. Chen, Q. Cao, J. He, Nanoscale 7, 1736 (2015)

    Article  ADS  Google Scholar 

  22. D. Min, W. Zhou, Y. Qing, F. Luo, D. Zhu, J. Electron. Mater. 46, 4903 (2017)

    Article  ADS  Google Scholar 

  23. S.M. Neumayer, L. Tao, A. O’Hara, J. Brehm, M. Si, P.-Y. Liao, T. Feng, S.V. Kalinin, D.Y. Peide, S.T. Pantelides, Phys. Rev. Appl. 13, 64063 (2020)

    Article  Google Scholar 

  24. S. ur Rehman, R. Ahmed, K. Ma, S. Xu, T. Tao, M.A. Aslam, M. Amir, J. Wang. Eng. Sci. 13, 71 (2020)

    Google Scholar 

  25. L.C. Dong, Y.B. Zhong, S. Zhe, T.Y. Zheng, H. Wang, RSC Adv. 6, 21037 (2016)

    Article  ADS  Google Scholar 

  26. P. Fu, X. Huan, J. Luo, S. Ren, X. Jia, X. Yang, A.C.S. Appl, Nano Mater. 3, 9340 (2020)

    Google Scholar 

  27. S. ur Rehman, R. Ahmed, J. Liu, J. Wang, M. Sun, Z. Fang, M.A. Aslam, P.C. Morais, C. Wang, H. Bi, Part. Part. Syst. Charact. 36, 1900047 (2019)

    Article  Google Scholar 

  28. S. ur Rehman, J. Wang, Q. Luo, M. Sun, L. Jiang, Q. Han, J. Liu, H. Bi, Chem. Eng. J. 373, 122 (2019)

    Article  Google Scholar 

  29. M.A. Aslam, W. Ding, S. ur Rehman, A. Hassan, Y. Bian, Q. Liu, Z. Sheng, Appl. Surf. Sci. 543, 148785 (2021)

    Article  Google Scholar 

  30. A. Hassan, W. Ding, M.A. Aslam, Y. Bian, Q. Liu, Z. Sheng, J. Mater. Res. Technol. 9, 12869 (2020)

    Article  Google Scholar 

  31. M.A. Aslam, K. Hu, W. Ding, A. Hassan, Y. Bian, K. Qiu, Q. Liu, Z. Sheng, Ceram. Int. 47(19), 27496–27502 (2021)

    Google Scholar 

  32. H. Peng, Z. Xiong, Z. Gan, C. Liu, Y. Xie, Compos. Part B Eng. 224, 109170 (2021)

    Article  Google Scholar 

  33. H.-Y. Wang, X. Sun, G.-S. Wang, J. Mater. Chem. A 9, 24571 (2021)

    Article  Google Scholar 

  34. Y.-L. Wang, S.-H. Yang, H.-Y. Wang, G.-S. Wang, X.-B. Sun, P.-G. Yin, Carbon N. Y. 167, 485 (2020)

    Article  Google Scholar 

  35. S. ur Rehman, M. Sun, M. Xu, J. Liu, R. Ahmed, M. Adnan-Aslam, R. Ali-Ahmad, H. Bi, J. Colloid Interface Sci. 574, 87 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Key Research and Development Project (2020YFA0210703), the National Natural Science Foundation of China (No. U2032159, U2032158, and 62005292), and supported by the Alliance of International Science Organizations, (ANSO-VF-2021-03), Development Program of Anhui Province (No. 202103a05020013, 202104a05020036), The Major Scientific and Technological Special Project of Anhui Province (202103a05020192).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Waqar Uddin, Nian Li or Zhenyang Wang.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 37 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslam, M.A., Ahsen, R., Uddin, W. et al. Tailoring the morphology of CoNi alloy by static magnetic field for electromagnetic wave absorption. Eur. Phys. J. Plus 137, 480 (2022). https://doi.org/10.1140/epjp/s13360-022-02680-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02680-0

Navigation