Skip to main content
Log in

The microwave absorption performance of NiFe2O4 prepared under the gradient magnetic field

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The NiFe2O4 (NFO) assembly was synthesized via thermal decomposition in a gradient magnetic field, and its structure, composition, as well as magnetic and electromagnetic absorption properties were investigated. The applied magnetic field adjusts the size of nanoparticles, the magnetic properties change correspondingly. The saturation magnetic intensity increases from 54.21 emu/g to 61.67 emu/g, however, the coercivity changes less, and Hc is in the range of 32.75–34.01 Oe. Simultaneously, the XPS results suggest that an increase in oxygen vacancies with addition of magnetic field. With the magnetic field application, a higher complex permittivity and more excellent microwave absorption performance are achieved. With the application of magnetic field, the nanoparticles become smaller, and more interfaces are generated, the interfacial polarisation effect is strengthened. Simultaneously, the applied magnetic field also leads to an increase in oxygen vacancies. Therefore, dielectric loss values are enhanced. Moreover, the reflection loss was optimized to − 14.32 dB with a matching thickness of 5.5 mm when the sample prepared under magnetic field 0.32 T. The above results prove that the magnetic field can be used as an effective route to achieve excellent microwave performance for NFO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. W. Wu, C. Yu, J. Chen, Q. Yang, Int. J. Environ. Anal. Chem. 100, 324–332 (2020)

    CAS  Google Scholar 

  2. C. Luo, T. Jiao, Y. Tang, J. Kong, Adv. Eng. Mater. 20, 1701168 (2018)

    Google Scholar 

  3. H. Lv, Z. Yang, P.L. Wang, G. Ji, J. Song, L. Zheng, H. Zeng, Z.J. Xu, Adv. Mater. 30, 1706343 (2018)

    Google Scholar 

  4. J.L. Gunjakar, A.M. More, K.V. Gurav, C.D. Lokhande, Appl. Surf. Sci. 254, 5844–5848 (2008)

    CAS  Google Scholar 

  5. L. Chen, H. Dai, Y. Shen, J. Bai, J. Alloys Compd. 491, L33–L38 (2010)

    CAS  Google Scholar 

  6. D.S. Mathew, R.S. Juang, Chem. Eng. J. 129, 51–65 (2007)

    CAS  Google Scholar 

  7. D.I. Sharifi, H. Shokrollahi, S. Amiri, J. Magn. Magn. Mater. 324, 903–915 (2012)

    CAS  Google Scholar 

  8. M.R. Phadatare, V.M. Khot, A.B. Salunkhe, N.D. Thorat, S.H. Pawar, J. Magn. Magn. Mater. 324, 770–772 (2012)

    CAS  Google Scholar 

  9. S. Prabhu, M. Geerthana, S. Sohila, G.M. Bhalerao, S. Harish, M. Navaneethan, Y. Hayakawa, R. Ramesh, J. Supercond. Nov. Magn. 32, 1423–1429 (2019)

    CAS  Google Scholar 

  10. T. Giannakopoulou, L. Kompotiatis, A. Kontogeorgakos, G. Kordas, J. Magn. Magn. Mater. 246, 360–365 (2002)

    CAS  Google Scholar 

  11. S.V. Bangale, D.R. Patil, S.R. Bamane, Arch. Appl. Sci. Res. 3, 506–513 (2011)

    CAS  Google Scholar 

  12. V. Šepelák, D. Baabe, D. Mienert, D. Schultze, F. Krumeich, F.J. Litterst, K.D. Becker, J. Magn. Magn. Mater. 257, 377–386 (2003)

    Google Scholar 

  13. C. Srinivas, B.V. Tirupanyam, A. Satish, V. Seshubai, D.L. Sastry, O.F. Caltun, J. Magn. Magn. Mater. 382, 15–19 (2015)

    CAS  Google Scholar 

  14. W. Lin, Z. Wang, Mater. Lett. 352, 135212 (2023)

    CAS  Google Scholar 

  15. G. Liang, F. Han, X. Ye, X. Meng, Mater. Sci. Eng. B 289, 116224 (2023)

    CAS  Google Scholar 

  16. B. Bateer, J. Zhang, H. Zhang, X. Zhang, C. Wang, H. Qi, J. Electron. Mater. 47, 292–298 (2018)

    CAS  Google Scholar 

  17. Y. Chen, P. Zhu, M. Duan, J. Li, Z. Ren, P. Wang, Appl. Surf. Sci. 486, 198–211 (2019)

    CAS  Google Scholar 

  18. H. Liu, M. Zhang, K. Hu, X. Kong, Q. Li, Q. Liu, J. Mater. Sci. Mater. Electron. 32, 26021–26033 (2021)

    CAS  Google Scholar 

  19. S. Golchinvafa, S.M. Masoudpanah, S. Alamolhoda, Ceram. Int. 49, 18134–18142 (2023)

    CAS  Google Scholar 

  20. H. Liu, M. Zhang, Y. Ye, J. Yi, Y. Zhang, Q. Liu, J. Alloys Compd. 892, 162126 (2022)

    CAS  Google Scholar 

  21. P. Yang, Y. Liu, X. Zhao, C. Zhang, J. Mater. Sci. Mater. Electron. 28, 9867–9875 (2017)

    CAS  Google Scholar 

  22. X. Zhang, X. Kan, M. Wang, R. Rao, G. Zheng, M. Wang, Y. Ma, J. Cryst. Growth 565, 126131 (2021)

    CAS  Google Scholar 

  23. W. Ding, L. Hu, J. Dai, X. Tang, R. Wei, Z. Sheng, C. Liang, D. Shao, W. Song, Q. Liu, M. Chen, X. Zhu, S. Chou, X. Zhu, Q. Chen, Y. Sun, S.X. Dou, ACS Nano 13, 1694–1702 (2019)

    CAS  PubMed  Google Scholar 

  24. G. Helgesen, A.T. Skjeltorp, P.M. Mors, R. Botet, R. Jullien, Phys. Rev. Lett. 61, 1736 (1988)

    CAS  PubMed  Google Scholar 

  25. P. Kumar, R. Kumar, H.N. Lee, Thin Solid Films 592, 155–161 (2015)

    CAS  Google Scholar 

  26. Z. Kou, E. Liu, J. Yue, Y. Sui, Z. Huang, D. Zhang, Y. Wang, Y. Zhai, J. Du, H. Zhai, J. Appl. Phys. 117, 17E709 (2015)

    Google Scholar 

  27. Z. Yang, M. Li, Y. Zhang, X. Lyu, D. Hu, J. Alloys Compd. 781, 321–329 (2019)

    CAS  Google Scholar 

  28. S. Moosavi, S. Zakaria, C.H. Chia, S. Gan, N.A. Azahari, H. Kaco, Ceram. Int. 43, 7889–7894 (2017)

    CAS  Google Scholar 

  29. R.S. Yadav, I. Kuřitka, J. Vilcakova, J. Havlica, J. Masilko, L. Kalina, J. Tkacz, V. Enev, M. Hajdúchová, J. Phys. Chem. Solids 107, 150–161 (2017)

    CAS  Google Scholar 

  30. W.P. Wp, H. Yang, T. Xian, J.L. Jiang, Mater. Trans. 53, 1586–1589 (2012)

    Google Scholar 

  31. Z. Zhou, Y. Zhang, Z. Wang, W. Wei, W. Tang, J. Shi, R. Xiong, Appl. Surf. Sci. 254, 6972–6975 (2008)

    CAS  Google Scholar 

  32. J.F. Marco, J.R. Gancedo, M. Gracia, J.L. Gautier, E. Ríos, F.J. Berry, J. Solid State Chem. 153, 74–81 (2000)

    CAS  Google Scholar 

  33. Y. Zou, H. Wang, R. Yang, X. Lai, J. Wan, G. Lin, D. Liu, Sens. Actuators B: Chem. 280, 227–234 (2019)

    CAS  Google Scholar 

  34. X. Wang, K. Fu, X. Wen, S. Qi, G. Tong, X. Wang, W. Wu, Appl. Surf. Sci. 598, 153826 (2022)

    CAS  Google Scholar 

  35. N. Song, S. Gu, Q. Wu, C. Li, J. Zhou, P. Zhang, W. Wang, M. Yue, J. Magn. Magn. Mater. 451, 793–798 (2018)

    CAS  Google Scholar 

  36. X. Liang, C. Wang, M. Yu, S. Liu, Y. Zhang, S. Zhong, J. Mater. Sci. Mater. Electron. 34, 31 (2023)

    CAS  Google Scholar 

  37. X. Chen, Y. Wang, H. Liu, S. Jin, G. Wu, J. Colloid Interface Sci. 606, 526–536 (2022)

    CAS  PubMed  Google Scholar 

  38. H. Liang, G. Chen, D. Liu, Z. Li, S. Hui, J. Yun, L. Zhang, H. Wu, Adv. Funct. Mater. 33, 2212604 (2023)

    CAS  Google Scholar 

  39. N.N. Song, H.T. Yang, X. Ren, Z.A. Li, Y. Luo, J. Shen, W. Dai, X.Q. Zhang, Z.H. Cheng, Nanoscale 5, 2804–2810 (2013)

    CAS  PubMed  Google Scholar 

  40. Y. Wang, X. Di, X. Wu, X. Li, J. Alloys Compd. 846, 156215 (2020)

    CAS  Google Scholar 

  41. M. Akyol, C. Aka, O. İnözü, F.Ö. Alkurt, M. Karaaslan, J. Mater. Sci. Mater. Electron. 34, 544 (2023)

    CAS  Google Scholar 

  42. B. Wang, Y. Ji, C. Mu, Y. Huo, J. Xiang, A. Nie, F. Wen, Appl. Surf. Sci. 591, 153176 (2022)

    CAS  Google Scholar 

  43. H. Yan, Y. Guo, X. Bai, J. Qi, X. Zhao, H. Lu, L. Deng, Appl. Surf. Sci. 633, 157602 (2023)

    CAS  Google Scholar 

  44. M. Mehdipour, H. Shokrollahi, J. Appl. Phys. 114, 043906 (2013)

    Google Scholar 

  45. H. Wu, S. Qu, K. Lin, Y. Qing, L. Wang, Y. Fan, Q. Fu, F. Zhang, Powder Technol. 333, 153–159 (2018)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2021YFA1600203), the National Natural Science Foundation of China (Grant No. U19A2093), and the Open Fund for Discipline Construction, Institute of Physical Science and Information Technology, Anhui University.

Funding

The work was supported by The National Key Research and Development Program of China, No. 2021YFA1600203, GanHong Zheng, The National Natural Science Foundation of China, Grant No. U19A2093

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by YZ, DH, WM, and ZC. The first draft of the manuscript was written by ZG and all authors commented on previous versions of the manuscript. This manuscript was guided by DZ and DW. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ganhong Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 114.0 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yun, Z., Zheng, G., Dong, H. et al. The microwave absorption performance of NiFe2O4 prepared under the gradient magnetic field. J Mater Sci: Mater Electron 35, 936 (2024). https://doi.org/10.1007/s10854-024-12638-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12638-w

Navigation