Skip to main content
Log in

Nonlinear corrections to the longitudinal structure function \(F_{L}\) from the parametrization of \(F_{2}\): Laplace transform approach

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The nonlinear corrections to the longitudinal structure function is derived at low values of the Bjorken variable x by using the Laplace transforms technique. The nonlinear behavior of the longitudinal structure function is determined with respect to the Gribov–Levin–Ryskin–Mueller–Qiu and Altarelli–Martinelli equations. These results show that the nonlinear longitudinal structure function can be determined directly in terms of the parametrization of \(F_{2}(x,Q^{2})\) and the derivative of the proton structure function with respect to \(\ln {Q^{2}}\). These corrections improve the behavior of the longitudinal structure function at low values of \(Q^{2}\) in comparison with other parametrization methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The standard parametrization of the gluon distribution function at low x introduced by

    $$\begin{aligned} G(x,Q^{2})=f(Q^{2})x^{-\delta } \end{aligned}$$

    where the low x behavior could well be more singular. By considering the variable change \(\nu {\equiv }\ln (1/x)\), one can rewrite the gluon distribution in s-space as

    $$\begin{aligned} {\mathcal {L}}[\widehat{G}^{2}(\nu ,Q^{2});s]{=}\frac{f(Q^{2})^{2}}{(s-2\delta )},\\ {\mathcal {L}}[\widehat{G}(\nu ,Q^{2});s]^{2}{=}\frac{f(Q^{2})^{2}}{(s-\delta )^{2}}. \end{aligned}$$

    We observe that the function \({\mathcal {L}}[\widehat{G}^{2}(\nu ,Q^{2});s]\) is always lower than \({\mathcal {L}}[\widehat{G}(\nu ,Q^{2});s]^{2}\) for low s values in a wide range of \(Q^{2}\) values. According to this result, we use from this limited approach for solving the quadratic equation in s-space.

References

  1. L.P. Kaptari et al., JETP Lett. 109, 281 (2019)

    Article  ADS  Google Scholar 

  2. G.R. Boroun, Eur. Phys. J. Plus 137, 32 (2022)

    Article  Google Scholar 

  3. M.M. Block, L. Durand, P. Ha, Phys. Rev. D 89, 011019 (2014)

    Article  Google Scholar 

  4. F.D. Aaron et al., H1 and ZEUS collaborations. JHEP 1001, 109 (2010)

    Article  ADS  Google Scholar 

  5. Abramowicz H. et al. H1 and ZEUS Collaborations. Eur. Phys. J. C 78, 473 (2018)

  6. M.R. Pelicer et al., Eur. Phys. J. C 79, 9 (2019)

    Article  ADS  Google Scholar 

  7. B. Rezaei, G.R. Boroun, Phys. Lett. B 692, 247 (2010)

    Article  ADS  Google Scholar 

  8. B. Rezaei, G.R. Boroun, Phys. Rev. C 101, 045202 (2020)

    Article  ADS  Google Scholar 

  9. M. Devee, J.K. Sarma, Eur. Phys. J. C 74, 2751 (2014)

    Article  ADS  Google Scholar 

  10. M. Devee, arXiv:1808.00899 (2018)

  11. P. Phukan, M. Lalung, J.K. Sarma, Nucl. Phys. A 968, 275 (2017)

    Article  ADS  Google Scholar 

  12. R. Wang, X. Chen, Chin. Phys. C 41, 053103 (2017)

    Article  ADS  Google Scholar 

  13. G.R. Boroun, Eur. Phys. J. A 43, 335 (2010)

    Article  ADS  Google Scholar 

  14. G.R. Boroun, B. Rezaei, Eur. Phys. J. C 81, 851 (2021)

    Article  ADS  Google Scholar 

  15. L.V. Gribov, E.M. Levin, M.G. Ryskin, Phys. Rept. 100, 1 (1983)

    Article  ADS  Google Scholar 

  16. A.H. Mueller, J.W. Qiu, Nucl. Phys. B 268, 427 (1986)

    Article  ADS  Google Scholar 

  17. A.V. Kotikov, JETP Lett. 111, 67 (2020)

    Article  ADS  Google Scholar 

  18. G. Altarelli, G. Martinelli, Phys. Lett. B 76, 89 (1978)

    Article  ADS  Google Scholar 

  19. S. Moch, J.A.M. Vermaseren, A. Vogt, Phys. Lett. B 606, 123 (2005)

    Article  ADS  Google Scholar 

  20. V. Andreev, A. Baghdasaryan, S. Baghdasaryan et al., Eur. Phys. J. C 74, 2814 (2014)

Download references

Acknowledgements

The author is thankful to the Razi University for financial support of this project

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. R. Boroun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boroun, G.R. Nonlinear corrections to the longitudinal structure function \(F_{L}\) from the parametrization of \(F_{2}\): Laplace transform approach. Eur. Phys. J. Plus 137, 371 (2022). https://doi.org/10.1140/epjp/s13360-022-02558-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02558-1

Navigation