Skip to main content
Log in

Natural convection of alumina-water nanofluid in a partially heated square cavity with isothermal blockage inside with uniform magnetic field and heat generation/absorption

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Natural convection of \(\mathrm{Al}_2\mathrm{O}_3\)-water nanofluid in a square cavity with an isothermally heated square blockage and partially heated on the bottom wall is investigated numerically. The effect of uniform magnetic field and heat generation/absorption is also studied. The governing equations are discretized by the finite volume method using power law scheme and solved by semi-implicit method for pressure-linked equation algorithm. The study was first validated with published works and satisfactory agreement was obtained. The effect of thermophysical parameters such as Rayleigh number, Hartmann number, heat generation/absorption and solid volume fraction of nanoparticles on the flow and temperature fields is demonstrated. The results are presented graphically in the form of isotherms, streamlines, velocity and Nusselt number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All data included in this manuscript are available upon request by contacting the corresponding author.]

Abbreviations

B :

Blockage ratio

\(B_0\) :

Magnetic field strength

\({c_p}\) :

Specific heat \((\mathrm{J}\ \mathrm{kg}^{-1}\ \mathrm{K}^{-1})\)

g :

Acceleration due to gravity, \(\mathrm{m}\ \mathrm{s}^{-2}\)

H :

Height of the cavity, m

Ha:

Hartmann number

k :

Heat conductivity \((\mathrm{W}\ \mathrm{m}^{-1}\ \mathrm{K}^{-1})\)

\({\mathrm{Nu}_\mathrm{avg}}\) :

Average Nusselt number

\({\mathrm{Nu}_\mathrm{loc}}\) :

Local Nusselt number

p :

Pressure \((\mathrm{kg}\ \mathrm{m}^{-1}\ \mathrm{s}^{-2})\)

P :

Dimensionless pressure

Pr:

Prandtl number

q :

Heat generation or absorption, \((\mathrm {W}\, \mathrm {m}^{-3}\,\mathrm {K}^{-1})\)

Q :

Dimensionless heat generation or absorption

\(\mathrm{Ra}\) :

Rayleigh number

t :

Dimensional time (s)

T :

Dimensional temperature (K)

u,v :

Velocity components \((\mathrm{m}\ \mathrm{s}^{-1})\)

U,V :

Dimensionless velocity components

x,y :

Dimensional coordinates (m)

X,Y :

Dimensionless coordinates

\(\alpha \) :

Thermal diffusivity (\(\mathrm{m}^2\ \mathrm{s}^{-1})\)

\(\beta \) :

Thermal expansion coefficient \((\mathrm{K}^{-1})\)

\(\mu \) :

Dynamic viscosity \((\mathrm {kg}\, \mathrm {m}^{-1}\, \mathrm {s}^{-1})\)

\(\nu \) :

Kinematic viscosity \((\mathrm{m}^2\ \mathrm{s}^{-1})\)

\(\theta \) :

Dimensionless temperature

\(\rho \) :

Density \((\mathrm{kg}\ \mathrm{m}^{-3})\)

\(\tau \) :

Dimensionless time

\(\varphi \) :

Volume fraction of the nanoparticles

\(\epsilon \) :

Dimensionless heat source length

\(\varPhi \) :

General transport variable

c:

Cold wall

h:

Hot wall

s:

Nanoparticles

f:

Fluid

nf:

Nanofluid

E,W,N,S:

Control volume nodes

References

  1. L.A. Florio, A. Harnoy, Int. J. Therm. Sci. 46, 76 (2007)

    Article  Google Scholar 

  2. A. Bairi, N. Laraqi, J.M. Garcia de Maria, Int. J. Sustain. Energy 24, 33 (2005)

    Article  Google Scholar 

  3. B. Jamal, M. Boukendila, L. El Moutaouakil, A. Abdelbaki, Z. Zrikem, Eur. Phys. J. Plus 135, 813 (2020)

    Article  Google Scholar 

  4. M. Hasnaoui, E. Bilgen, P. Vasseur, J. Thermophys. Heat Transf. 6, 255 (1992)

    Article  ADS  Google Scholar 

  5. R.A.W.M. Henkes, C.J. Hoogendoorn, Appl. Sci. Res. 47, 195 (1990)

    Article  Google Scholar 

  6. M.M. Ganzarolli, L.F. Milanez, Int. J. Heat Mass Transf. 38, 1063 (1995)

    Article  Google Scholar 

  7. O. Aydin, W. Yang, Int. J. Numer. Methods Heat Fluid Flow 10, 518 (2000)

    Article  Google Scholar 

  8. M. Bourich, M. Hasnaoui, A. Amahmid, Int. J. Heat Fluid Flow 25, 1034 (2004)

    Article  Google Scholar 

  9. A. Mansour, A. Amahmid, M. Hasnaoui, M. Bourich, Numer. Heat Transf. A 49, 69 (2006)

    Article  ADS  Google Scholar 

  10. A. Koca, K.F. Oztop, Y. Varol, Int. Commun. Heat Mass Transf. 34, 511 (2007)

    Article  Google Scholar 

  11. F. Corvaro, M. Paroncini, Exp. Therm. Fluid Sci. 31, 721 (2007)

    Article  Google Scholar 

  12. S.U.S. Choi, A.S.M.E. Fluids, Eng. Div. 231, 99 (1995)

    Google Scholar 

  13. K. Khanafer, K. Vafai, M. Lightstone, Int. J. Heat Mass Transf. 46, 3639 (2003)

    Article  Google Scholar 

  14. A.K. Santra, S. Sen, N. Chakraborty, J. Enhanc, Heat Transf. 15, 273 (2008)

    Google Scholar 

  15. S.M. Aminossadati, B. Ghasemi, Eur. J. Mech. B Fluids 28, 630 (2009)

    Article  ADS  Google Scholar 

  16. H.F. Oztop, E. Abu-Nada, Y. Varol, K. Al-Salem, Superlattices Microstruct. 49, 453 (2011)

    Article  ADS  Google Scholar 

  17. R. Nasrin, M.A. Alim, A.J. Chamkha, Int. J. Heat Mass Transf. 55, 7355 (2012)

    Article  Google Scholar 

  18. H. Noriega, M. Reggio, P. Vasseur, Comput. Therm. Sci. 5, 289 (2013)

    Article  Google Scholar 

  19. I. Rashidi, O. Mahian, G. Lorenzini, C. Biserni, S. Wongwises, Int. J. Heat Mass Transf. 74, 391 (2014)

    Article  Google Scholar 

  20. A.H. Bhuiyana, Md.S. Alam, M.A. Alim, Procedia Eng. 194, 435 (2017)

    Article  Google Scholar 

  21. E. Khalili, A. Saboonchi, M. Saghafian, Int. J. Therm. Sci. 112, 82 (2017)

    Article  Google Scholar 

  22. M. Sabour, M. Ghalambaz, A. Chamkha, Int. J. Numer. Methods Heat Fluid Flow 27, 1504 (2017)

    Article  Google Scholar 

  23. C. Qi, J. Tang, G. Wang, J. Therm. Anal. Calorim. 141, 277 (2020)

    Article  Google Scholar 

  24. M.Z.A. Qureshi, M. Ashraf, Eur. Phys. J. Plus 133, 71 (2018)

    Article  Google Scholar 

  25. M. Sheikholeslami, H.B. Rokni, Int. J. Heat Mass Transf. 115, 1203 (2017)

    Article  Google Scholar 

  26. M. Molana, V. Zarrinderafsh, A.J. Chamkha, S. Izadi, S. Rafizadeh, Heat Transf. Asian Res. 49, 1418 (2020)

    Article  Google Scholar 

  27. S.O. Giwa, M. Sharifpur, M.H. Ahmadi, J.P. Meyer, J. Therm. Anal. Calorim. 145, 2581 (2021)

    Article  Google Scholar 

  28. M. Pirmohammadi, M. Ghassemi, Int. Commun. Heat Mass Transf. 36, 776 (2009)

    Article  Google Scholar 

  29. B. Ghasemi, S.M. Aminossadati, A. Raisi, Int. J. Therm. Sci. 50, 1748 (2011)

    Article  Google Scholar 

  30. P.X. Yu, J.X. Qiu, Q. Qin, Z.F. Tian, Int. J. Heat Mass Transf. 67, 1131 (2013)

    Article  Google Scholar 

  31. M. Sheikholeslami, M.G. Bandpy, Powder Technol. 256, 490 (2014)

    Article  Google Scholar 

  32. A. Mahmoudi, I. Merji, A. Omri, Int. J. Heat Technol. 34, 73 (2016)

    Article  Google Scholar 

  33. W.K. Hussam, K. Khanafer, H.J. Salem, G.J. Sheard, Int. Commun. Heat Mass Transf. 104, 127 (2019)

    Article  Google Scholar 

  34. S. Jani, M. Mahmoodi, M. Amini, J.E. Jam, Therm. Sci. 18, 1119 (2014)

    Article  Google Scholar 

  35. N. Nithyadevi, T. Mahalakshmi, C.U. Shankar, Int. J. Nanoparticles 9, 244 (2017)

    Article  Google Scholar 

  36. N.H. Saeid, Heat Transf. Eng. 39, 154 (2018)

    Article  ADS  Google Scholar 

  37. A.S. Dogonchi, M.A. Ismael, A.J. Chamkha, D.D. Ganji, J. Therm. Anal. Calorim. 135, 3485 (2019)

    Article  Google Scholar 

  38. F.H. Ali, H.H. Hamzah, K. Egab, M. Arici, A. Shahsavar, Int. J. Mech. Sci. 186, 105887 (2020)

    Article  Google Scholar 

  39. M.A. Alhazmy, Int. J. Therm. Sci. 49, 2201 (2010)

    Article  Google Scholar 

  40. J.S. Chordiya, R.V. Sharma, J. Mech. Sci. Technol. 33, 2481 (2019)

    Article  Google Scholar 

  41. M. Mahmoodi, S.M. Sebdani, Superlattices Microstruct. 52, 261 (2012)

    Article  ADS  Google Scholar 

  42. M.A. Siddiqui, T. Javed, Z. Mehmood, Eur. Phys. J. Plus 133, 468 (2018)

    Article  Google Scholar 

  43. D. Iyi, R. Hasan, Procedia Eng. 105, 176 (2015)

    Article  Google Scholar 

  44. K. Kalidasan, R. Velkennedy, P. Rajesh Kanna, Appl. Therm. Eng. 92, 219 (2016)

    Article  Google Scholar 

  45. A. Alsabery, M. Ishak, A.J. Chamkha, I. Hashim, Entropy 20, 336 (2018)

    Article  ADS  Google Scholar 

  46. M.H. Tilehnoee, A.S. Dogonchi, S.M. Seyyedi, A.J. Chamkha, D.D. Ganji, J. Therm. Anal. Calorim. 141, 2033 (2020)

    Article  Google Scholar 

  47. R.F. Bergholz, J. Heat Transf. 102, 242 (1980)

    Article  Google Scholar 

  48. M.A. Teamah, W.M. El-Maghlany, Int. J. Therm. Sci. 58, 130 (2012)

  49. M. Rajarathinam, N. Nithyadevi, Therm. Sci. Eng. Prog. 4, 35 (2017)

    Article  Google Scholar 

  50. A.M. Rashad, A.J. Chamkha, M.A. Ismael, T. Salah, J. Heat Transf. 140, 072502 (2018)

    Article  Google Scholar 

  51. N.A. Bakar, R. Roslan, M.K.M. Akhir, CFD Lett. 12, 38 (2020)

    Article  Google Scholar 

  52. A. Abdulkadhim, H.K. Hamzah, F.H. Ali, C. Yildiz, A.M. Abed, E.M. Abed, M. Arici, Int. Commun. Heat Mass Transf. 120, 105024 (2021)

    Article  Google Scholar 

  53. T. Tayebi, H.F. Oztop, A.J. Chamkha, Therm. Sci. Eng. Prog. 19, 100605 (2020)

    Article  Google Scholar 

  54. N. Rudraiah, R.M. Barron, M. Venkatachalappa, C.K. Subbaraya, Int. J. Eng. Sci. 33, 1075 (1995)

    Article  Google Scholar 

  55. S. Alchaar, P. Vasseur, E. Bilgen, J. Heat Transf. 117, 668 (1995)

    Article  Google Scholar 

  56. J.C. Maxwell, A Treatise on Electricity and Magnetism (Oxford University Press, Cambridge UK, 1873)

    MATH  Google Scholar 

  57. H.C. Brinkman, J. Chem. Phys. 20, 571 (1952)

    Article  ADS  Google Scholar 

  58. S.V. Patankar, Numerical Heat Transfer and Fluid Flow (Hemisphere, McGraw-Hill, Washington DC, 1980)

    MATH  Google Scholar 

  59. P.S. Mahapatra, S. De, K. Ghosh, N.K. Manna, A. Mukhopadhyay, Numer. Heat Transf. A 64, 1 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The author N. Suresh would like to acknowledge the Rajiv Gandhi National Fellowship (RGNF) (Grant No. F1-17.1/2016-17/RJNF-2015-17-SC-TAM-24774), India for their financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Nithyadevi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suresh, N., Nithyadevi, N. & Chamkha, A.J. Natural convection of alumina-water nanofluid in a partially heated square cavity with isothermal blockage inside with uniform magnetic field and heat generation/absorption. Eur. Phys. J. Plus 137, 400 (2022). https://doi.org/10.1140/epjp/s13360-022-02557-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02557-2

Navigation