Skip to main content
Log in

Complex mixed-mode oscillations in oscillators sharing nonlinearity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Mixed-mode oscillations (MMOs) are a typical manifestation of slow-fast dynamical systems that contains a sequence of large amplitude excursions interspersed with small amplitude oscillations. We identified complex forms of MMOs in a system of three coupled non-autonomous LCR oscillators sharing a common nonlinearity. Different sequences of MMOs and related dynamics like MMO incrementing bifurcations, Farey sequences, and amplitude-modulated spiking have been witnessed in the model as a consequence of 2-slow and 1-fast external driving frequencies. For particular parametric space, the period adding sequence of MMOs is found to follow a devil’s staircase structure. The transition between states is found to occur via torus canards explosion. We validate our observations through numerical investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The authors confirm that the data supporting the findings of this study are available within the article.]

References

  1. M. Brons, K. Bar-Eli, J. Phys. Chem. 95(22), 8706–8713 (1991)

    Article  Google Scholar 

  2. A. Milik, P. Szmolyan, H. Loffelmann, E. Groller, J. Int, Bifurc. Chaos 8(03), 505–519 (1998)

    Article  Google Scholar 

  3. M. Desroches, J. Guckenheimer, B. Krauskopf, C. Kuehn, H.M. Osinga, M. Wechselberger, SIAM Rev. 54(2), 211–288 (2012)

    Article  MathSciNet  Google Scholar 

  4. M.J. Hauser, L.F. Olsen, J. Chem. Soc., Faraday Trans. 92(16), 2857–2863 (1996)

    Article  Google Scholar 

  5. V. Petrov, S.K. Scott, K. Showalter, J. Chem. Phys. 97(9), 6191–6198 (1992)

    Article  ADS  Google Scholar 

  6. F.N. Albahadily, J. Ringland, M. Schell, J. Chem. Phys. 90(2), 813–821 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  7. M.T. Koper, P. Gaspard, J. Phys. Chem. 95(13), 4945–4947 (1991)

    Article  Google Scholar 

  8. H. Fallah, Int. J Bifurc. Chaos 26(09), 1630022 (2016)

    Article  Google Scholar 

  9. M. Desroches, B. Krauskopf, H.M. Osinga, Chaos 18(1), 015107 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  10. S. Battaglin, M.G. Pedersen, Nonlinear Dyn. 104, 4445–4457 (2021)

    Article  Google Scholar 

  11. K. Shimizu, M. Sekikawa, N. Inaba, Phys. Lett. A 375(14), 1566–1569 (2011)

    Article  ADS  Google Scholar 

  12. K. Shimizu, M. Sekikawa, N. Inaba, Chaos 25(2), 023105 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  13. D. Premraj, K. Suresh, T. Banerjee, K. Thamilmaran, Chaos 27, 013104 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  14. F. Marino, M. Ciszak, S.F. Abdalah, K. Al-Naimee, R. Meucci, F.T. Arecchi, Phys. Rev. E 84(4), 047201 (2011)

    Article  ADS  Google Scholar 

  15. J.H.T. Mbé, A.F. Talla, G.R.G. Chengui, A. Coillet, L. Larger, P. Woafo, Y.K. Chembo, Phys. Rev. E 91(1), 012902 (2015)

    Article  ADS  Google Scholar 

  16. D.V. Alexandrov, I.A. Bashkirtseva, L.B. Ryashko, Phys. D 343, 28–37 (2017)

    Article  MathSciNet  Google Scholar 

  17. I. Bashkirtseva, A. Pisarchik, L. Ryashko, T. Ryazanova, Adv. Complex Syst. 19, 1550027 (2016)

    Article  MathSciNet  Google Scholar 

  18. B.J. Bacak, T. Kim, J.C. Smith, J.E. Rubin, I.A. Rybak, eLife 5, e13403 (2016)

  19. I. Erchova, D.J. McGonigle, Chaos 18(1), 015115 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  20. M. Brons, T.J. Kaper, H.G. Rotstein, Chaos 18, 015101 (2008)

    Article  ADS  Google Scholar 

  21. R. Larter, C.G. Steinmetz, Philos. Trans. R. Soc. Lond., Ser. A 337, 291–298 (1991)

  22. A. Arneodo, F. Argoul, J. Elezgaray, P. Richetti, Phys. D 62(1–4), 134–169 (1993)

    Article  Google Scholar 

  23. L. Holden, T. Erneux, SIAM J. App. Math. 53(4), 1045–1058 (1993)

    Article  Google Scholar 

  24. D. Premraj, K. Suresh, T. Banerjee, K. Thamilmaran, Commun. Nonlinear Sci. and Numer. Simul. 37, 212–221 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  25. D. Premraj, K. Suresh, J. Palanivel, K. Thamilmaran, Commun. Nonlinear Sci. and Numer. Simul. 50, 103 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  26. D. Premraj, K. Suresh, T. Banerjee, K. Thamilmaran, Phys. Rev. E 98, 022206 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  27. J. Palanivel, K. Suresh, D. Premraj, K. Thamilmaran, Chaos. Solitons Fractals 106, 35–43 (2018)

    Article  ADS  Google Scholar 

  28. J. Guckenheimer, R. Harris-Warrick, J. Peck, A. Willms, J. Comput. Neurosci. 4(3), 257–277 (1997)

    Article  Google Scholar 

  29. M.G. Pedersen, M. Brons, M.P. Sorensen, Chaos 32, 013121 (2022)

    Article  ADS  Google Scholar 

  30. J. Guckenheimer, R. Haiduc, Moscow Math. J. 5(1), 91–103 (2005)

    Article  MathSciNet  Google Scholar 

  31. L. Yaru, L. Shenquan, Nonlinear Dyn. 103, 2881–2902 (2021)

    Article  Google Scholar 

  32. V. Theodore, Phys. D 356, 37–64 (2017)

    MathSciNet  Google Scholar 

  33. M.A. Kramer, R.D. Traub, N.J. Kopell, Phys. Rev. Lett. 101(6), 068103 (2008)

    Article  ADS  Google Scholar 

  34. J. Burke, M. Desroches, A.M. Barry, T.J. Kaper, M.A. Kramer, J Math. Neurosci. 2(1), 3 (2012)

    Article  Google Scholar 

  35. R. Straube, D. Flockerzi, M.J.B. Hauser, J. Phys.: Confer. Ser. 55(1), 214–231 (2006)

    ADS  Google Scholar 

  36. P. Kaklamanos, N. Popovic, K.U. Kristiansen, Chaos 32, 013108 (2022)

    Article  ADS  Google Scholar 

  37. M. Desroches, A. Guillamon, E. Ponce, R. Prohens, S. Rodrigues, A.E. Teruel, SIAM Rev. 58(4), 653–691 (2016)

    Article  MathSciNet  Google Scholar 

  38. T. Shruti, S.A. Pawar, S. Banerjee, A.J. Varghese, R.I. Sujith, Chaos 30, 103112 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  39. P. Kasthuri, V.R. Unni, R. Sujith, Chaos 29, 043117 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  40. M. Santhiah, P. Philominathan, I.R. Mohamed, K. Murali, J. Int, Bifurc. Chaos 21(01), 161–175 (2011)

    Article  Google Scholar 

  41. A. Jeevarekha, M. Paul Asir, P. Philominathan, J. Int, Bifurc. Chaos 26(06), 1650094 (2016)

    Article  Google Scholar 

  42. M. Sekikawa, T. Kousaka, T. Tsubone, N. Inaba, H. Okazaki, Phys. D 433, 133178 (2022)

    Article  Google Scholar 

  43. H. Beyer, J. Schmidt, O. Hinrichs, D. Schmolke, Acta Bio. Med. Germ. 34(3), 409–417 (1975)

    Google Scholar 

  44. N. Fenichel, J. Differ. Equ. 31(1), 53–98 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  45. M. Orban, I.R. Epstein, J. Phys. Chem. 86, 3907–3910 (1982)

    Article  Google Scholar 

Download references

Acknowledgements

DP gratefully acknowledges that this work is funded by the Center for Nonlinear Systems, Chennai Institute of Technology (CIT), India, vide funding number CIT/CNS/2021/RP-015. KS thank the DST-SERB, Government of India, for providing National Post Doctoral fellowship under the Grant No. PDF/2019/001589.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally to the preparation of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asir, M.P., Premraj, D. & Sathiyadevi, K. Complex mixed-mode oscillations in oscillators sharing nonlinearity. Eur. Phys. J. Plus 137, 282 (2022). https://doi.org/10.1140/epjp/s13360-022-02498-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02498-w

Navigation